• Title/Summary/Keyword: Fuzzy Self-Learning

Search Result 116, Processing Time 0.027 seconds

A fuzzy dynamic learning controller for chemical process control

  • Song, Jeong-Jun;Park, Sun-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1950-1955
    • /
    • 1991
  • A fuzzy dynamic learning controller is proposed and applied to control of time delayed, non-linear and unstable chemical processes. The proposed fuzzy dynamic learning controller can self-adjust its fuzzy control rules using the external dynamic information from the process during on-line control and it can create th,, new fuzzy control rules autonomously using its learning capability from past control trends. The proposed controller shows better performance than the conventional fuzzy logic controller and the fuzzy self organizing controller.

  • PDF

Balancing and Position Control of an Circular Inverted Pendulum System Using Self-Learning Fuzzy Controller (자기학습 퍼지제어기를 이용한 원형 역진자 시스템의 안정화 및 위치 제어)

  • 김용태;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.172-175
    • /
    • 1996
  • In the paper is proposed a hierarchical self-learning fuzzy controller for balancing and position control of an circular inverted pendulum system. To stabilize the pendulum at a specified position, the hierarchical fuzzy controller consists of a supervisory controller, a self-learning fuzzy controller, and a forced disturbance generator. Simulation example shows the effectiveness of the proposed method.

  • PDF

Simulation Study on Self-learning Fuzzy Control of CO Concentration

  • Tanaka, Kazuo;Sano, Manabu;Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1366-1369
    • /
    • 1993
  • This paper presents a simulation study on two self-learning control systems for a fuzzy prediction model of CO (carbon monoxide) concentration:linear control and fuzzy control. The self-learning control systems are realized by using Widrow-Hoff learning rule which is a basic learning method in neural networks. Simulation results show that the learning efficiency of fuzzy controller is superior to that of linear controller.

  • PDF

Design of Learning Fuzzy Controller by the Self-Tuning Algorithm for Equipment Systems (설비시스템을 위한 자기동조기법에 의한 학습 FUZZY 제어기 설계)

  • Lee, Seung
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.6
    • /
    • pp.71-77
    • /
    • 1995
  • This paper deals with design method of learning fuzzy controller for control of an unknown nonlinear plant using the self-tuning algorithm of fuzzy inference rules. In this method the fuzzy identification model obtained that the joined identification model of nonlinear part and linear identification model of linear part by fuzzy inference systems. This fuzzy identification model ordered self-tuning by Decent method so as to be servile to nonlinear plant. A the end, designed learning fuzzy controller of fuzzy identification model have learning structure to model reference adaptive system. The simulation results show that th suggested identification and learning control schemes are practically feasible and effective.

  • PDF

A New Learning Algorithm of Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Ryu, Jeong-Woong;Song, Chang-Kyu;Kim, Sung-Suk;Kim, Sung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.95-101
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

Self-Directed Learning Evaluation Using Fuzzy Grade Sheets

  • Kim, Kwang-Baek;Kim, Byung-Joo;Cho, Jae-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.97-101
    • /
    • 2004
  • This paper is about the use of existing evaluation methods, which evaluate learning determined by the score of an exam, which is either a multiple-choice type or single choice type question. These scores don't show the objective evaluations that cause some negative opinions about the scores. In this paper, we propose that the evaluation of the methods of self-directed learning use the triangle-type function of the fuzzy theory so that the learner can objectively evaluate their own learning ability. The proposed method classifies the result of learning into three fuzzy grades to calculate membership, and evaluate the result of an exam according to the final fuzzy grade degree as applied to the fuzzy grade sheets.

Self-Organized Reinforcement Learning Using Fuzzy Inference for Stochastic Gradient Ascent Method

  • K, K.-Wong;Akio, Katuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.96.3-96
    • /
    • 2001
  • In this paper the self-organized and fuzzy inference used stochastic gradient ascent method is proposed. Fuzzy rule and fuzzy set increase as occasion demands autonomously according to the observation information. And two rules(or two fuzzy sets)becoming to be similar each other as progress of learning are unified. This unification causes the reduction of a number of parameters and learning time. Using fuzzy inference and making a rule with an appropriate state division, our proposed method makes it possible to construct a robust reinforcement learning system.

  • PDF

A New Learning Algorithm for Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Kim, Sung-Suk;Kwak, Keun-Chang;Kim, Sung-Soo;Ryu, Jeong-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1254-1259
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

  • PDF

Self-Organizing Fuzzy Modeling Based on Hyperplane-Shaped Clusters (다차원 평면 클러스터를 이용한 자기 구성 퍼지 모델링)

  • Koh, Taek-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.985-992
    • /
    • 2001
  • This paper proposes a self-organizing fuzzy modeling(SOFUM)which an create a new hyperplane shaped cluster and adjust parameters of the fuzzy model in repetition. The suggested algorithm SOFUM is composed of four steps: coarse tuning. fine tuning cluster creation and optimization of learning rates. In the coarse tuning fuzzy C-regression model(FCRM) clustering and weighted recursive least squared (WRLS) algorithm are used and in the fine tuning gradient descent algorithm is used to adjust parameters of the fuzzy model precisely. In the cluster creation, a new hyperplane shaped cluster is created by applying multiple regression to input/output data with relatively large fuzzy entropy based on parameter tunings of fuzzy model. And learning rates are optimized by utilizing meiosis-genetic algorithm in the optimization of learning rates To check the effectiveness of the suggested algorithm two examples are examined and the performance of the identified fuzzy model is demonstrated via computer simulation.

  • PDF

Fuzzy logic control of a planar parallel manipulator using multi learning algorithm (다중 학습 알고리듬을 이용한 평면형 병렬 매니퓰레이터의 Fuzzy 논리 제어)

  • Song, Nak-Yun;Cho, Whang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.914-922
    • /
    • 1999
  • A study on the improvement of tracking performance of a 3 DOF planar parallel manipulator is performed. A class of adaptive tracking control sheme is designed using self tuning adaptive fuzzy logic control theory. This control sheme is composed of three classical PD controller and a multi learning type self tuning adaptive fuzzy logic controller set. PD controller is tuned roughly by manual setting a priori and fuzzy logic controller is tuned precisely by the gradient descent method for a global solution during run-time, so the proposed control scheme is tuned more rapidly and precisely than the single learning type self tuning adaptive fuzzy logic control sheme for a local solution. The control performance of the proposed algorithm is verified through experiments.

  • PDF