Fifth IFSA World Congress (1993), 1366-1369

Simulation Study on Self-learning Fuzzy Control of CO Concentration

Kazuo TANAKA, Manabu SANO

Diepartment of Mechanical Systems Engineering
Kanazawa University
2-40-20 Kodatsuno Kanazawa 920 Japan

Abstract

This paper presents a simulation study on two
self-learning control systems for a fuzzy prediction model
of CO (carbon monoxide) concentration:linear control and
fuzzy control. The self-learning control systems are
realized by using Widrow-Hoff learning rule which is a
basic learning method in neural networks. Simulation
results show that the learning efficiency of fuzzy controller
is superior to that of linear controller.

1. Introduction

CO (carbon monoxide) is one of important factors
in air pollution problems. It is known that CO
concentration system has

(1high non-linearity, and

(2)many predictor variables.
On the other hand, it has been reported that fuzzy modeling
techniques are useful for identification of complex systems
[2,34,5].

In a previous paper [1], we have identified a fuzzy
prediction model for CO concentration in the air at a traffic
intersection point of a large city of Japan. Moreover, we
have reported that the identified fuzzy model is very useful
for predicting CO concentration.

In this paper, we simulate self-learning control
systems of CO concentration using the identified fuzzy
model. The purpose of this control is to keep CO
concenfration at a constant level. We adaptively adjust
controller parameters by introducing Widrow-Hoff learning
rule since dynamics of the real CO concentration system
changes gradually over a long period of time.

2. Fuzzy modeling of CO concentration

A fuzzy model, proposed by Takagi and Sugeno
[3], is described by fuzzy IF-THEN rules which locally
represent linear input-output relations of a system. This
fuzzy model is of the following form:
Rulei:IF xyis Aj; and- .. and x, is Ay,

THEN vy; = cjptci X1+ - “+CinXn, 6))
where i=1, 2, - - 1, r is the number of IF-THEN rules, yi
is the output from the i-th IF-THEN rule, and Aijis a
fuzzy set.

Given an input (x1,x2,- - - ,xn), the final output
of the fuzzy model is inferred by as follows [8):
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T
y=2 WiVi (2)
i=1 ’
where yi is calculated for the input by the consequent
equation of the i-th implication, and the weight wi implies
the overall truth value of the premise of the i-th
implication for the input calculated as
n
wi= ]I Ax(xk), (3)
k=1
where Aik(xk) = exp( -(xk-dik)2/bik ), dik and bik are
parameters of the membership functions.

Next, we explain outline of identification
algorithm of a fuzzy model proposed by Tanaka and Sano
[2]. Our method is a simplified version of a fuzzy
modeling method proposed by Sugeno and Kang [4,5].
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Fig.1 Identification algorithm

Fig.1 shows the identification algorithm. The
identification procedure is classified into three steps:

(Step I)choice of the premise structure and the

consequent structure;

(Step 2)identification of the parameters of the

structure determined in (Step 1);

(Step 3)verification of the premise structure and

the consequent structure.

In a previous paper {1], we have applied this
fuzzy modeling method to identification of a fuzzy
prediction model for CO concentration in the air at a traffic
intersection point of a large city of Japan. Inputs and an
output of a fuzzy model are shown in Fig.2. x1 is wind
velocity, x2 is volume of traffic, x3 is temperature, x4 is
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amount of sunshine, and y is CO concentration. For each
variable, we perform normalization so that the mean and
the variance of normalized variables equal 0 and I,
respectively. In other words, we transform the distribution
to N(0,1).

X1(t) ~x1(1-4)

x2(t) ~ x2(t-4)
Fuzzy

Model

x3(t) ~ x3(t-4) y(t+1)

x4(t) ~ x4(t-4)

y(t)~ y(t-4)

Fig.2 Inputs and an output of fuzzy model

The data used for identification and prediction of a
fuzzy model are collected at the busiest traffic intersection
of a large city of Japan. The number of data used for
identification and prediction are 480 input-output data pairs
and 253 input-output pairs, respectively. The sampling
interval is 15 minutes. Of course, the prediction data is not
used for identification of a fuzzy model. It is used only for
checking the validity of a fuzzy model identified by using
the identification data. Fig.3 shows the identification
result. The fuzzy model consists of two IF-THEN rules.

Eq.(4) shows the performance index of the model.

=_1_m-‘1 y(t+1)-y*(t+1)
R e MR

where m is the number of input-output data. y*(t+1) and
y(t+1) are the outputs of a fuzzy model and the real system
at time instant t+1, respectively. y*(t+1) and y(t+1) are
raw data and are not normalized.

Table 1 Performances of models

Linear Fuzzy

model model
J 5.7 4.8
J2 11.8 5.9

Table 1 shows the values of performance index
for a linear model and the fuzzy model. J1 and J2 are the
values of performance index for the identification data and
the prediction data, respectively. The performance index J2
of the fuzzy model is superior to that of linear model. This
means that the CO concentration system is essentially
non-linear. Table 1 shows the usefulness of the identified
fuzzy model.

Rule 1 : IF x2(t-1) is exp(-(x2(t-1)+1 .90)2/5.80)
THEN yl1(t+1) = '
-0.008x1(t-2)+0.026x1(t-1)-0.032x1(t)
-0.205x2(t-1)+0.249x2(t)
-0.138x4(t-4)-0.181x4(1-3)+0.335x4(t-2)
+0.088x4(t-1)-0.112x4(t)
+0.090y(1-4)-0.106y(t-3)+0.01 1y(t-2)
-0.460y(t-1)+1.356y(1)-0.018

2
Rule 2 : IF x2(t-1) is exp(-(x2(t-1)-2.06) /5.72)
THEN y2(t+1) =
-0.013x1(t-2)+0.059x1(t-1)-0.032x1(t)
-0.497x2(t-1)+0.827x2(t)
+0.006x4(t-4)+0.066x4(t-3)-0.130x4(t-2)
+0.095x4(t-1)-0.036x4(t)
-0.009y(t-4)+0.007y(t-3)-0.037y(t-2)
-0.103y(t-1)+0.748y(1)-0.002

Fig.3 Identification result
3. Self-learning controls

We simulate two self-learning control systems of
keeping CO concentration at a constant level using
Widrow-Hoff learning rule:linear control and fuzzy control.
Fig.4 shows the self-learning control system, where x2(t)
is a manipulated variable, y(t) is a controlled variable and r
is a setpoint of CO concentration.

Real Data
(Prediction Data)
Zl(t)y )’1(“1), Xl(t),
z2(t) ;
Learning] _ y2(t+1) x3(v),
Block wl, w2 x4(1)

r + x2(t)| Identified | y(t)
Controller |—®| Fuzzy
- Model

X

Fig.4 Self-learning control system

In this simulation,

(I)with respect to wind velocity x1, temperature x3
and amount of sunshine x4, we use real values of
the prediction data,

(2)we use the identified fuzzy model as a controlled
object.
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Linear controller is constructed as follows.
Ax2(t) = a1 z1(t) + a2 z2(t),
x2(t) = x2(t-1)+ Ax2(D),

where z1(f)=r-y(t) and z2(t)=z1(t)-z1(t-1) and ai (i=1, 2) is a
parameter of the controller. As mentioned above, we
adaptively adjust controller parameters by using Widrow-
Hoff learning rule. The idea which adaptively optimizes
parameters of fuzzy controller using Widrow-Hoff learning
rule was first introduced by Ichihashi [8].

Let us consider the following performance
function.

J =%(r-y(t+1) )2 (5)

By partially differentiating J with respect to each controller
parameter ai, we obtain

aJ

—=-(r- Z wiyj(t+1) ) zi(t) E wipj  (6)

da;
where wj is a membershlp value of ]-th rule of fuzzy
model at time instant t and pj is a consequent parameter of
x2(t), that is, pl1 = 0.249 and p2 = 0.827. We can
successively adjust controller parameters using Eq.(7).

af BV = aP'D

+& (r- Z wiyj(t+1)) Zl(t) Z wip; (N
J_ k]
where €; is a learning factor and €; = 0.003 (1—1, 2).
On the other hand, fuzzy controller is constructed
as follows.
Rule 1:IF x2(t-1) is A1 THEN
Ax12(0) = all z1(t) + a12 z2(t),
Rule 2:IF x2(t-1) is A2 THEN
Ax22(t) = a21 z1(t) + a22 z2(1),
where Al and A2 are the same fuzzy sets as in the
identified fuzzy model shown in Fig.3, that is,
AL(x2(t-1))=exp(-(x2(t-1)+1.90)2/5.80),
A2(x2(t—1))=exp(-(x2(t-1)-2.06)2/5.72).
The final output of the fuzzy controller is calculated as
follows.
Ax2(t) = wlAx12() + w2Ax22(1),
x2(t) = x2(t- 1)+ Ax2(1),
where w1 and w2 are membership values of Al and A2,
that is, w1 = A1(x2(t-1)), w2 = A2(x2(t-1)). The learning
law of the fuzzy controller can be derived in the same way
as the linear controller.

affe™ = afft?
+ &y (1- Z wiyi(t+1) ) wizi(t) Z wip; (8)
=1 =1
where €ik = 0.003 (i, k=1, 2).
Fig.5 shows relations between the number of
learning and summation of squared error (SE), where

SE =mill (r-y®F €D
t= ]

and m=253. It is found from Fig.5 that the learning
efficiency of the fuzzy controller is superior to that of the

linear controller. We can point out that the self-learning
fuzzy controller effectively compensate non-linearity of the
controlled object.
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Fig.5 Learning process

Fig.6 ~ Fig.8 show simulation results of self-
learning fuzzy control system. The setpoint r is set as
follows. If time of a day is from 8 o'clock to 20 o'clock,
then r=30, else r=5. It is found from these figures that the
self-learning fuzzy control of CO concentration are
effectively realized.

5. Conclusion

We have simulated two self-learning control
systems for an identified fuzzy prediction model of CO
concentration by using Widrow-Hoff learning rule. The
purpose of this control is to keep CO concentration at a
constant level. It has been assumed in this simulation that
the identified fuzzy model perfectly represents real CO
concentration system. Therefore, we should investigate
robustness of this control system for parameter
perturbation of the CO concentration model. This is a
subject for future study.
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Fig.8 Control result (number of learning : 20)
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