• Title/Summary/Keyword: Fuzzy Sampling

Search Result 101, Processing Time 0.028 seconds

Event-Triggered Model Predictive Control for Continuous T-S fuzzy Systems with Input Quantization (양자화 입력을 고려한 연속시간 T-S 퍼지 시스템을 위한 이벤트 트리거 모델예측제어)

  • Kwon, Wookyong;Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1364-1372
    • /
    • 2017
  • In this paper, a problem of event-triggered model predictive control is investigated for continuous-time Takagi-Sugeno (T-S) fuzzy systems with input quantization. To efficiently utilize network resources, event-trigger is employed, which transmits limited signals satisfying the condition that the measurement of errors is over the ratio of a certain level. Considering sampling and quantization, continuous Takagi-Sugeno (T-S) fuzzy systems are regarded as a sector bounded continuous-time T-S fuzzy systems with input delay. Then, a model predictive controller (MPC) based on parallel distributed compensation (PDC) is designed to optimally stabilize the closed loop systems. The proposed MPC optimize the objective function over infinite horizon, which can be easily calculated and implemented solving linear matrix inequalities (LMIs) for every event-triggered time. The validity and effectiveness are shown that the event triggered MPC can stabilize well the systems with even smaller average sampling rate and limited actuator signal guaranteeing optimal performances through the numerical example.

Fuzzy GMDH-type Model and Its Application to Financial Demand Forecasting for the Educational Expenses

  • Hwang, Heung-Suk;Seo, Mi-Young
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.183-189
    • /
    • 2007
  • In this paper, we developed the fuzzy group method data handling-type (GMDH) Model and applied it to demand forecasting of educational expenses. At present, GMDH family of modeling algorithms discovers the structure of empirical models and it gives only the way to get the most accurate identification and demand forecasts in case of noised and short input sampling. In distinction to fuzzy system, the results are explicit mathematical models, obtained in a relative short time. In this paper, an adaptive learning network is proposed as a kind of fuzzy GMDH. The proposed method can be reinterpreted as a multi-stage fuzzy decision rule which is called as the fuzzy GMDH. The fuzzy GMDH-type networks have several advantages compared with conventional multi-layered GMDH models. Therefore, many types of nonlinear systems can be automatically modeled by using the fuzzy GMDH. A computer program is developed and successful applications are shown in the field of demand forecasting problem of educational expenses with the number of factors considered.

  • PDF

A Study on the Performance Improvement of a Nonlinear Fuzzy PID Controller (비선형 퍼지 PID 제어기의 성능 개선에 관한 연구)

  • 김인환;이병결;김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.852-861
    • /
    • 2003
  • In this paper, in order to improve the disadvantages of the fixed design-parameter fuzzy PID controller. a new fuzzy PID controller named a variable design-parameter fuzzy PID controller is suggested. The main characteristic of the suggested controller is to adjust design-parameters of the controller by comparing magnitudes between fuzzy controller inputs at each sampling time when controller inputs are measured. As a result. all fuzzy input partitioned spaces converge within a time-varying normalization scale. and the resultant PID control action can always be applied precisely regardless of operating input magnitudes. In order to verify the effectiveness of the suggested controller. several a computer simulations for a nonlinear system are executed and the control parameters of the variable design-parameter fuzzy PID controller are throughly analyzed.

Design of Dual-Rate Fuzzy Model-based Digital Controller Using Intelligent Digital Redeisgn

  • Kim, Do-Wan;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1289-1294
    • /
    • 2003
  • This paper proposes a novel and efficient intelligent digital redesign technique for a Takagi-Sugeno (TS) fuzzy system. The term of intelligent digital redesign involves converting an existing analog fuzzy-model-based controller into an equivalent digital counterpart in the sense of state matching. In this paper, we suggest the discretization method based on the dual-rate sampling approximation is first proposed, and then attempt to globally match the states of the overall closed-loop TS fuzzy system with the pre-designed analog fuzzy-model-based controller and those with the digitally redesigned fuzzy-model-based controller. To show the feasibility and the effectiveness of the proposed method, a computer simulation is provided.

  • PDF

Intelligent Digital Redesign Via Complete State-Matching (완벽한 상태정합을 이용한 지능형 디지털 재설계)

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.276-278
    • /
    • 2006
  • In this paper, a complete solution to fuzzy-model-based digital redesign problem (IDR) for sampled-data nonlinear systems is presented, The term of intelligent digital redesign (IDR) is to design a digital fuzzy controller such that the sampled-data closed-loop fuzzy system is equivalent to the continuous-time closed-loop fuzzy system using the state matching, Its solution is simply obtained by linear transformation, Under the proposed sampled-data controller, the states of the sampled-data and continuous-time fuzzy system are completely matched at every sampling points.

  • PDF

Indirect Adaptive Fuzzy Sliding Mode Control for Nonaffine Nonlinear Systems

  • Seo, Sam-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.145-150
    • /
    • 2005
  • We proposed the indirect adaptive fuzzy model based sliding mode controller to control nonaffine nonlinear systems. Takagi-Sugano fuzzy system is used to represent the nonaffine nonlinear system and then inverted to design the controller at each sampling time. Also sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. The proposed controller and adaptive laws guarantee that the closed-loop system is stable in the sense of Lyapunov and the output tracks a desired trajectory asymptotically.

Neuro-Fuzzy GMDH Model and Its Application to Forecasting of Mobile Communication (뉴로 - 퍼지 GMDH 모델 및 이의 이동통신 예측문제에의 응용)

  • Hwang, Heung-Suk
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.28-32
    • /
    • 2003
  • In this paper, the fuzzy group method data handling-type(GMDH) neural networks and their application to the forecasting of mobile communication system are described. At present, GMDH family of modeling algorithms discovers the structure of empirical models and it gives only the way to get the most accurate identification and demand forecasts in case of noised and short input sampling. In distinction to neural networks, the results are explicit mathematical models, obtained in a relative short time. In this paper, an adaptive learning network is proposed as a kind of neuro-fuzzy GMDH. The proposed method can be reinterpreted as a multi-stage fuzzy decision rule which is called as the neuro-fuzzy GMDH. The GMDH-type neural networks have several advantages compared with conventional multi-layered GMDH models. Therefore, many types of nonlinear systems can be automatically modeled by using the neuro-fuzzy GMDH. The computer program is developed and successful applications are shown in the field of estimating problem of mobile communication with the number of factors considered.

A Fuzzy Controller Using Artificial Immune Algorithm for Trajectory Tracking of WMR (경로 추적을 위한 구륜 이동 로봇의 인공 면역 알고리즘을 이용한 퍼지 제어기)

  • Kim Sang-Won;Park Chong-Kug
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.561-567
    • /
    • 2006
  • This paper deals with a fuzzy controller using IA(Immune Algorithm) for Trajectory Tracking of 2-DOF WMR(Wheeled Mobile Robot). The global inputs to the WMR are reference position and reference velocity, which are time variables. The global output of WMR is a current position. The tracking controller makes position error to be converged 0. In order to reduce position error, a compensation velocities on the track of trajectory is necessary. Therefore, a FIAC(Fuzzy-IA controller) is proposed to give velocity compensation in this system. Input variables of fuzzy part are position errors in every sampling time. The output values of fuzzy part are compensation velocities. IA are implemented to adjust the scaling factor of fuzzy part. The computer simulation is performed to get the result of trajectory tracking and to prove efficiency of proposed controller.

Digital Implementation of Backing up control of Truck-trailer type Mobile Robots (트럭-트레일러 타입의 모바일로봇을 위한 귀환 제어기 설계)

  • Ku, Ja-Yl;Park, Chang-Woo
    • 전자공학회논문지 IE
    • /
    • v.46 no.2
    • /
    • pp.33-45
    • /
    • 2009
  • In this paper, the implementation of the backward movement control of a truck-trailer type mobile robot using fuzzy model based control scheme considering the practical constraints, computing time-delay and quantization is presented. We propose the fuzzy feedback controller whose output is delayed with unit sampling period and predicted. The analysis and the design problem considering the computing time-delay become very easy because the proposed controller is syncronized with the sampling time. Also, the stability analysis is made when the quantization exists in the implementation of the fuzzy control architectures and it is shown that if the trivial solution of the fuzzy control system without quantization is asymptotically stable, then the solutions of the fuzzy control system with quantization are uniformly ultimately bounded. The experimental results are shown to verify the effectiveness of the proposed scheme.

Optimal Inspection Policy By Fuzzy Goal Programming (Fuzzy Goal Programming을 이용한 최적 검사 정책)

  • 유정상
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.185-191
    • /
    • 1995
  • In this research, a mathematical programming model is developed for the economic modeling of sampling plans based on two evaluation criteria : the outgoing quality and the average total inspection cost A fuzzy goal programming model and its solution procedure are proposed for the managers whose management objectives on the two evaluation criteria are not rigorous. To study the sensitivity of quality characteristic dependence on the resulting inspection plans, a numerical example is solved several times for a dependent model.

  • PDF