• Title/Summary/Keyword: Fuzzy Rules

Search Result 1,218, Processing Time 0.024 seconds

Weighted Fuzzy Reasoning Using Weighted Fuzzy Pr/T Nets (가중 퍼지 Pr/T 네트를 이용한 가중 퍼지 추론)

  • Cho, Sang-Yeop
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.757-768
    • /
    • 2003
  • This paper proposes a weighted fuzzy reasoning algorithm for rule-based systems based on weighted fuzzy Pr/T nets, where the certainty factors of the fuzzy production rules, the truth values of the predicates appearing in the rules and the weights representing the importance of the predicates are represented by the fuzzy numbers. The proposed algorithm is more flexible and much closer to human intuition and reasoning than other methods : $\circled1$ calculate the certainty factors using by the simple min and max operations based on the only certainty factors of the fuzzy production rules without the weights of the predicates[10] : $\circled2$ evaluate the belief of the fuzzy production rules using by the belief evaluation functions according to fuzzy concepts in the fuzzy rules without the weights of the predicates[12], because this algorithm uses the weights representing the importance of the predicates in the fuzzy production rules.

Interval-Valued Fuzzy Set Backward Reasoning Using Fuzzy Petri Nets (퍼지 페트리네트를 이용한 구간값 퍼지 집합 후진추론)

  • 조상엽;김기석
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.559-566
    • /
    • 2004
  • In general, the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions appearing in the rules are represented by real values between zero and one. If it can allow the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions to be represented by interval -valued fuzzy sets, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more flexible manner. This paper presents fuzzy Petri nets and proposes an interval-valued fuzzy backward reasoning algorithm for rule-based systems based on fuzzy Petri nets Fuzzy Petri nets model the fuzzy production rules in the knowledge base of a rule-based system, where the certainty factors of the fuzzy propositions appearing in the fuzzy production rules and the certainty factors of the rules are represented by interval-valued fuzzy sets. The algorithm we proposed generates the backward reasoning path from the goal node to the initial nodes and then evaluates the certainty factor of the goal node. The proposed interval-valued fuzzy backward reasoning algorithm can allow the rule-based systems to perform fuzzy backward reasoning in a more flexible and human-like manner.

  • PDF

Digital Signal Processing Based on Fuzzy Rules

  • Arakawa, Kaoru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1305-1308
    • /
    • 1993
  • A novel digital signal processing technique based on fuzzy rules is proposed for estimating nonstationary signals, such as image signals, contaminated with additive random noises. In this filter, fuzzy rules are utilized to set the filter parameters, taking the local characteristics of the signal into consideration. The introduction of the fuzzy rules is effective, since the rules to set the filter parameters is usually expressed ambiguously. Computer simulations verify its high performance.

  • PDF

Interval-valued Fuzzy Set Reasoning Using Fuzzy Petri Nets (퍼지 페트리네트를 이용한 구간간 퍼지집합 추론)

  • 조경달;조상엽
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.625-631
    • /
    • 2004
  • In general, the certainty factors of the fuzzy production rules and the certainty factors of fuzzy Propositions appearing in the rules are represented by real values between zero and one. If it can allow the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions to be represented by interval-valued fuzzy sets, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more flexible manner(15). This paper presents a fuzzy Petri nets and proposes an interval-valued fuzzy reasoning algorithm for rule-based systems based on fuzzy Petri nets. Fuzzy Petri nets model the fuzzy production rules in the knowledge base of a rule-based system, where the certainty factors of the fuzzy Propositions appearing in the furry production rules and the certainty factors of the rules are represented by interval-valued fuzzy sets. The proposed interval-valued fuzzy set reasoning algorithm can allow the rule-based systems to perform fuzzy reasoning in a more flexible manner.

The Study on Inconsistent Rule Based Fuzzy Logic Control using Neural Network

  • Cho, Jae-Soo;Park, Dong-Jo;Z. Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.145-150
    • /
    • 1997
  • In this paper is studied a method of fuzzy logic control based on possibly inconsistent if-then rules representing uncertain knowledge or imprecise data. In most cases of practical applications adopting fuzzy if-then rule bases, inconsistent rules have been considered as ill-defined rules and, thus, not allowed to be in the same rule base. Note, however, that, in representing uncertain knowledge by using fuzzy if-then rules, the knowledge sometimes can not be represented in literally consistent if-then rules. In this regard, when it is hard to obtain consistent rule base, we propose the weighted rule base fuzzy logic control depending on output performance using neural network and we will derive the weight update algorithm. Computer simulations show the proposed method has good performance to deal with the inconsistent rule base fuzzy logic control. And we discuss the real application problems.

  • PDF

Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE (FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구)

  • Park, Wook-Dong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

Transformation of TSK fuzzy systems into fuzzy systems with singleton consequents and its application (TSK퍼지시스템을 결론부가 singleton인 퍼지시스템으로 표현하는 방법과 그 응용)

  • 채양범;오갑석;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.225-231
    • /
    • 1998
  • TSK fuzzy system can represent effectively the behavior of a complex nonlinear system with low number of rules with the desired accuracy and guarantee the stability of the closed loop system, while the interpretation of the rules is difficult due to the functional nature of the consequents. On the contrary, fuzzy controller with singleton consequents is understandable intuitively and adjustable the rules easily due to qualitative expression of the rules. Ideally, one would like to combine the positive identification properties of TSK fuzzy system with the advantages of fuzzy controller with singleton consequents. Therefore, this paper suggests a method transforming TSK fuzzy systems into fuzzy systems with singleton consequents, and shows its application designing a fuzzy controller with singleton consequents by using the TSK fuzzy system when the behavior of a nonlinear system is described with a singleton fuzzy model by human esper.

  • PDF

A Study on the Development of Causal Knowledge Base Based on Data Mining and Fuzzy Cognitive Map (데이터 마이닝과 퍼지인식도 기반의 인과관계 지식베이스 구축에 관한 연구)

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.247-250
    • /
    • 2003
  • Due to the increasing use of very large databases, mining useful information and implicit knowledge from databases is evolving. However, most conventional data mining algorithms identify the relationship among features using binary values (TRUE/FALSE or 0/1) and find simple If-THEN rules at a single concept level. Therefore, implicit knowledge and causal relationships among features are commonly seen in real-world database and applications. In this paper, we thus introduce the mechanism of mining fuzzy association rules and constructing causal knowledge base form database. Acausal knowledge base construction algorithm based on Fuzzy Cognitive Map(FCM) and Srikant and Agrawal's association rule extraction method were proposed for extracting implicit causal knowledge from database. Fuzzy association rules are well suited for the thinking of human subjects and will help to increase the flexibility for supporting users in making decisions or designing the fuzzy systems. It integrates fuzzy set concept and causal knowledge-based data mining technologies to achieve this purpose. The proposed mechanism consists of three phases: First, adaptation of the fuzzy membership function to the database. Second, extraction of the fuzzy association rules using fuzzy input values. Third, building the causal knowledge base. A credit example is presented to illustrate a detailed process for finding the fuzzy association rules from a specified database, demonstration the effectiveness of the proposed algorithm.

  • PDF

Generating Fuzzy Rules by Hybrid Method and Its Application to Classification Problems (혼합 방법에 의한 퍼지 규칙 생성과 식별 문제에 응용)

  • Lee, Mal-Rey;Lee, Jae-Pil
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.5
    • /
    • pp.1289-1296
    • /
    • 1997
  • To build up a knowledge-based system in an Artifical Inerligence System, selecting an appropriate set of rules is one of the key provlems. In this paper, we discuss a new method for exteacting fuzzy rules diredtly from fuzzy membdrchip function dat for pattern classifcation. The fuzzy rules with variable fuzzy recions are defined by sharing fuzzy space in fuzzy grid.Tehse rules are extracted form memberchop function. Them, optimal input vari-ables for the rules are determined using the number of extracted rules as a criterion. The method is compared with neural networks using Ishibuchi. Finally, in order to demonstrate the cffectiveness of the present method, simulation results are shown.

  • PDF

Context-Awareness Healthcare for Disease Reasoning Based on Fuzzy Logic

  • Lee, Byung-Kwan;Jeong, Eun-Hee;Lee, Sang-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.247-256
    • /
    • 2016
  • This paper proposes Context-Awareness Healthcare for Disease Reasoning based on Fuzzy Logic. It consists of a Fuzzy-based Context-Awareness Module (FCAM) and a Fuzzy-based Disease Reasoning Module (FDRM). The FCAM computes a Correlation coefficient and Support between a Condition attribute and a Decision attribute and generates Fuzzy rules by using just the Condition attribute whose Correlation coefficient and Support are high. According to the result of accuracy experiment using a SIPINA mining tool, those generated by Fuzzy Rule based on Correlation coefficient and Support (FRCS) and Improved C4.5 are 0.84 and 0.81 each average. That is, compared to the Improved C4.5, the FRCS reduces the number of generated rules, and improves the accuracy of rules. In addition, the FDRM can not only reason a patient’s disease accurately by using the generated Fuzzy Rules and the patient disease information but also prevent a patient’s disease beforehand.