• 제목/요약/키워드: Fuzzy Rule Generation

검색결과 79건 처리시간 0.039초

A Rule Merging Method for Fuzzy Classifier Systems and Its Applications to Fuzzy Control Rules Acquisition

  • Inoue, Hiroyuki;Kamei, Katsuari
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.78-81
    • /
    • 2003
  • This paper proposes a fuzzy classifier system (FCS) using hyper-cone membership functions (HCMFs) and rule reduction techniques. The FCS can generate excellent rules which have the best number of rules and the best location and shape of membership functions. The HCMF is expressed by a kind of radial basis function, and its fuzzy rule can be flexibly located in input and output spaces. The rule reduction technique adopts a decreasing method by merging the two appropriate rules. We applay the FCS to a tubby rule generation for the inverted pendulum control.

  • PDF

Inconsistency in Fuzzy Rulebase: Measure and Optimization

  • Shounak Roychowdhury;Wang, Bo-Hyeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.75-80
    • /
    • 2001
  • Rule inconsistency is an important issue that is needed to be addressed while designing efficient and optimal fuzzy rule bases. Automatic generation of fuzzy rules from data sets, using machine learning techniques, can generate a significant number of redundant and inconsistent rules. In this study we have shown that it is possible to provide a systematic approach to understand the fuzzy rule inconsistency problem by using the proposed measure called the Commonality measure. Apart from introducing this measure, this paper describes an algorithm to optimize a fuzzy rule base using it. The optimization procedure performs elimination of redundant and/or inconsistent fuzzy rules from a rule base.

  • PDF

Hybrid Fuzzy Adaptive Wiener Filtering with Optimization for Intrusion Detection

  • Sujendran, Revathi;Arunachalam, Malathi
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.502-511
    • /
    • 2015
  • Intrusion detection plays a key role in detecting attacks over networks, and due to the increasing usage of Internet services, several security threats arise. Though an intrusion detection system (IDS) detects attacks efficiently, it also generates a large number of false alerts, which makes it difficult for a system administrator to identify attacks. This paper proposes automatic fuzzy rule generation combined with a Wiener filter to identify attacks. Further, to optimize the results, simplified swarm optimization is used. After training a large dataset, various fuzzy rules are generated automatically for testing, and a Wiener filter is used to filter out attacks that act as noisy data, which improves the accuracy of the detection. By combining automatic fuzzy rule generation with a Wiener filter, an IDS can handle intrusion detection more efficiently. Experimental results, which are based on collected live network data, are discussed and show that the proposed method provides a competitively high detection rate and a reduced false alarm rate in comparison with other existing machine learning techniques.

Development of a Knowledge Discovery System using Hierarchical Self-Organizing Map and Fuzzy Rule Generation

  • Koo, Taehoon;Rhee, Jongtae
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.431-434
    • /
    • 2001
  • Knowledge discovery in databases(KDD) is the process for extracting valid, novel, potentially useful and understandable knowledge form real data. There are many academic and industrial activities with new technologies and application areas. Particularly, data mining is the core step in the KDD process, consisting of many algorithms to perform clustering, pattern recognition and rule induction functions. The main goal of these algorithms is prediction and description. Prediction means the assessment of unknown variables. Description is concerned with providing understandable results in a compatible format to human users. We introduce an efficient data mining algorithm considering predictive and descriptive capability. Reasonable pattern is derived from real world data by a revised neural network model and a proposed fuzzy rule extraction technique is applied to obtain understandable knowledge. The proposed neural network model is a hierarchical self-organizing system. The rule base is compatible to decision makers perception because the generated fuzzy rule set reflects the human information process. Results from real world application are analyzed to evaluate the system\`s performance.

  • PDF

A Systematic Design of Automatic Fuzzy Rule Generation for Dynamic System

  • Kang, Hoon;Kim, Young-Ho;Jeon, Hong-Tae
    • 한국지능시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.29-39
    • /
    • 1992
  • We investigate a systematic design procedure of automatic rule generation of fuzzy logic based controllers for highly nonlinear dynamic systems such as an engine dynamic modle. By "automatic rule generation" we mean autonomous clustering or collection of such meaningful transitional relations from one conditional subspace to another. During the design procedure, we also consider optimaly control strategies such as minimum squared error, near minimum time, minimum energy or combined performance critiera. Fuzzy feedback control systems designed by our method have the properties of closed-loop stability, robustness under parameter variabitions, and a certain degree of optimality. Most of all, the main advantage of the proposed approach is that reliability can be potentially increased even if a large grain of uncertainty is involved within the control system under consideration. A numerical example is shown in which we apply our strategic fuzzy controller dwsign to a highly nonlinear model of engine idling speed control.d control.

  • PDF

급성복통과 관련된 지능형 질환 진단시스템을 위한 퍼지 규칙 생성과 이의 최적화 (Fuzzy Rule Generation and Optimization for the Intelligent Diagnosis System of Diseases associated with Acute Abdominal Pain Based on Fuzzy Relational Products)

  • 현우석
    • 정보처리학회논문지B
    • /
    • 제11B권7호
    • /
    • pp.855-860
    • /
    • 2004
  • 본 논문에서는 급성복통과 관련된 지능형 질환 진단시스템에서 지식베이스의 최적화에 대해서 논한다. 급성복통과 관련된 지능형 질환 진단시스템의 지식베이스는 퍼지 규칙과 퍼지 멤버쉽 함수들로 구성되는데, 본 연구에서는 효율적으로 퍼지 규칙을 생성하는 알고리즘을 적용한 개선된 급성복통과 관련된 지능형 질환 진단 시스템(A-lDS-DAAP)을 제안한다. 제안하는 시스템은 기존의 IDS-DAAP, IDS-DAAP-NN과 비교해 볼 때, 진단의 정확성을 높이면서 수행속도를 향상시켰다.

규칙 제거 기능이 있는 자기구성 퍼지 시스템 (Self-Organizing Fuzzy Systems with Rule Pruning)

  • 이창욱;이평기
    • 한국산업융합학회 논문집
    • /
    • 제6권1호
    • /
    • pp.37-42
    • /
    • 2003
  • In this paper a self-organizing fuzzy system with rule pruning is proposed. A conventional self-organizing fuzzy system having only rule generation has a drawback in generating many slightly different rules from the existing rules which results in increased computation time and slowly learning. The proposed self-organizing fuzzy system generates fuzzy rules based on input-output data and prunes redundant rules which are caused by parameter training. The proposed system has a simple structure but performs almost equivalent function to the conventional self-organizing fuzzy system. Also, this system has better learning speed than the conventional system. Simulation results on several numerical examples demonstrate the performance of the proposed system.

  • PDF

확장된 퍼지엔트로피 클러스터링을 이용한 카오스 시계열 데이터 예측 (Chaotic Time Series Prediction using Extended Fuzzy Entropy Clustering)

  • 박인규
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(3)
    • /
    • pp.5-8
    • /
    • 2000
  • In this paper, we propose new algorithms for the partition of input space and the generation of fuzzy control rules. The one consists of Shannon and extended fuzzy entropy function, the other consists of adaptive fuzzy neural system with back propagation teaming rule. The focus of this scheme is to realize the optimal fuzzy rule base with the minimal number of the parameters of the rules, reducing the complexity of the system. The proposed algorithm is tested with the time series prediction problem using Mackey-Glass chaotic time series.

  • PDF

A Study on Genetic Algorithms for Automatic Fuzzy Rule Generation

  • Cho, Hyun-Joon;Wang, Bo-Hyeum
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.275-278
    • /
    • 1996
  • The application of genetic algorithms to fuzzy rule generation holds a great deal of promise in overcoming difficult problems in fuzzy systems design. There are some aspects to be considered when genetic algorithms are used for generating fuzzy rules. In this paper, we will present an aspect about the control surface constructed by the resultant rules. In the extensive simulations, an important observation that the rules searched by genetic algorithms are randomly scattered is made and a solution to this problem is provided by including a smoothness cost in the objective function. We apply the fuzzy rules generated by genetic algorithms to the fuzzy truck backer-upper control system and compare them with the rules made by an expert.

  • PDF