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ABSTRACT

We investigate a systematic design procedure of automatic rule generation of fuzzy logic
based controllers for highly nonlinear dynamic systems such as an engine dynamic model. By
“automatic rule generation” we mean autonomous clustering or collection of such meaningful
transitional relations from one conditional subspace to another. During the design procedure,
we also consider optimal control strategies such as minimum squared error, near minimum
time, minimum energy or combined performance criteria. Fuzzy feedback control systems
designed by our method have the properties of closed-loop stability, robustness under par-
ameter variabtions, and a certain degree of optimality. Most of all, the main advantage of the
proposed approach is that reliability can be potentially increased even if a large grain of uncer-
tainty is involved within the control system under consideration. A numerical example is
shown in which we apply our strategic fuzzy controller design to a highly nonlinear model of
engine idling speed control.

1. Introduction

Fuzzy logic/linguistic control can be catagorized as a knowledge-based system or an expert
control paradigm. the reason for which is that every control action derived by the fuzzy infer-
ence engine is based on some a priori knowledge source whether the inferring mechanism is
the MAX-MIN method or the MAX-DOT operation, or something else!!l. However, the difficulties
in constructing a rule base have prevented the fuzzy engineers from approaching to a
generalized methodology for fuzzy rule based control systems!?. The fuzzy logic control scheme

is shown in Figure 1.
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Figure 1. Block Diagram of Fuzzy Logic Control System
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We propose a systematic design procedure of automatic rule generation for highly nonlinear
dynamic procvesses. Fuzzy logic based feedback control is suitable for our physical target of
automatic rule generation. Membership functions stored in a fuzzy logic controller can be eas-
ily modified and updated without repetitive tedious re-evaluation of different dynamic models.
This procedure of generating the rules required In a fuzzy logic controller should guarantee
stability of the closed-loop system and robustness under parameter variations. We utilize the
cell-to-cell mapping theory originally introduced by Hsu® and later applied to fuzzy dynamic
systems by Chen et al® The key point in making a stable control rule base is that every
stabilizable feedback system has a chain of state transitions from one cell-state to another.
Conseguential elements of such trunsitions are anticipated according to applied control action
of each rule, Data required for this transitional set of rules can be collected via ™

(A] A priort information such as experimental results,
(B) Numerical simulation runs based on dynamic models, and
{C) Expertise and heuristics.

Specifications, accuracy and precision, of the system tolerances can be arbitrarily adjusted
and are a function of resolution of design parameter®. The next section deals with the step-by-
step procedure as to the synthests of a fuzzy logie control rule base based on the given
input-state data pairs of a particular nonlinear dynamic model. These are the training data for
approximate learning,

2. Automatic Rule Generation for Fuzzy Logic Controllers

Fuzzy Logic Control Based On Cell State Transitions: General fuzzy controllers have four
components: fuzzifier, rule base, fuzzy inference englne, and detuzzifier. The control rules can
be determined by using the celltocell mapping theory™ and the cellstate transitions.
Comparing with the point to-point mapping theory, this concept make use of the intervals and
a finite number of cells in the cell-state. The dynamical characteristics are preserved as far as
the resolution allows.

DEFINITION 1:A “Cell"z 1s deflned as an n-tuple of integers in the cell-state space Z such

that n

z=z1.22. 2u\=\ z, €
T (1)

where et is the unit vector in the direction of zt and the corresponding x is
represented by

2= 0.8) hi { x: ¢ (#z; + 0.5) hy (2}
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hi...interval size. z,...integer representing x,

DEFINITION 2: A "Celi-to-Cell Mapping” F is a relation between cells in the cell state space, ¥
Z-> 7. and the function values have onetoone correspondence with the
point-to-point mapping { such that

Xk =flxg) € 2* (~) z* =Flzy) (3)

DEFINITION 3: An “Equilibrium Cell” z* (Invariant Cell) of F satisfles

z* =Fz*) {4)
DEFINITION 4: A k-Perfod Motion Cell is the distinct k cells z(1),....z(k) that satisfy

z(1) = F*z(1)) and z(m +1) = F™(z(1)).

As an example. four 4-perfod motion cells are represented in Figure 2.

z(1) —>2(2) |[¢—— 2’

A A

v

z(4) | {——2(3) 2z’

Figure 2. 4 period Motion Celis 2(1).2(2).2(3) «(4)

Systematic Procedure for Automatic Rule Generation:

STEP 1:Consider a two-state dynamic model given by

dxi/dt=f(x.x2, 8. ) (5a})
dxa/de = fa(x1.x2. 8, 6) (5h)

where x:. x2 are the states (or the errors):fy, f» are the nonlinear mappings:and 3, # are the
control inputs. From the admissible controls, we select finite representative constant values of
&'s and £'s and we call them 4,'s and #/'s. Thesc crisp numbers will be fuzzified later after the
performance Is satisfled. Moreover. we choose finite representative points in the state space to
anticipate the trajectories from one subspace to another. These countless trajectories are
called a ‘'manifold’ and one set of data is collected hy setting d; and ¢/; conslant. Repeated
collections of such information are used next in order (o obtain a rule hase for feedback regu
lation of x; and xz. L.e.. xi, xa — 0 as f increases. We denote Xin. X2 the mth and the nth
intervals of x; and x;, respectively. Linguistically. we defline

Linn = Xim Xan (6)
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and then Lm, is a finite region in the state space. By applying fixed controls, §; and &), one set

of transitional relations is obtained for example,

Rules of Dynamical Behavior (Cell-State Transitions):

(81, 61):z(L12) — z(Las)
(01, 61):z(L2s) —  z(Las) (7)

(61, 61):2{Lss) — z(Lza)

Table 1. Cell-State Transition Table in the 3-dim. Cell-State Space

Controls l Prev. State | Next State Time t { Perf . Index
P i o Mol
22 12130 | 0.5sec | 5.2
u=+1 | 11,11} (3.2,1! 0.3 sec ‘ 7.7
‘F.‘F_H_ Rl S i
L 121,31 {2,1,31* | 0 sec ! 0.0
11.3.1} 11,2,2! i 0.4 sec 4.3
V.fr,.A,f_,f,_, f } - N —
u=-—1 120,20 | {3210 | 0.3sec 11.2
e e ] ]

We continue to change (3, &)) to get other sets of transitional rules and exhaustively gather

finite number of transitional relations. When we store the above information, we add time
required during transitions, and other optimal performance indices such as energy, squared
errors, etc. These transition relations are stored in the table which we call a “cell-state tran-
sition table”. An example of cell-state transition table in the 3 dimensional cell-state space is
shown in Table 1. Changing (3:, ), we may have the same Lmn for the source and the desti-
nation and this is called an ‘invariant cell’ or an ‘invariant manifold’. For an invariant cell,
there should be a design limit in the transition time since it is an indefinite stay in that Lmn. It
is emphasized that the target L. (the specified goal) must have an invariant manifold for
some fixed controls (3;, &) for convergence and asymptotic stability. This is equivalent to the
‘reachability condition’ in the classical control theory. The target is denoted as L*.
STEP 2:From the collected data, we generate an N-ary tree that connects from one node Lmn to
another. The root of the tree is L* and we avoid any looping structures. We proceed with a
search technique of artificial intelligence (Al) and the search procedure is initiated by finding
all possible dynamic transitions to the target region L*. There may be multiple paths from one
region to another and we eliminate multiplicity and extract only one transition by considering
the following concepts:

1. Redundancy in Controls, Transitions

2. Optimal Strategies — Minimum Energy, Minimum Time, Minimum Squared Errors, or

Combinations

3. Minimum Euclidean Distance
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The elements of the finalized tree constitute a set of control rule base. These rules are auto-
matically generated on the basis of optimal performance criteria such as minimum time or
minimum energy concepts. Simply, the transitional relations that forces the trajectories from
any points in the state space to the desired goal within the prescribed tolerances are them-
selves the control rules for feedback regulation. We store the membership functions for the
transition relations in matrices Pi and C;. in which rows the numerical values in [0,1] are the
chosen membership functions.

STEP 3:The fuzzification procedure undertakes the rule generation so that the crisp
transitions between the regions in the state space can be smoothed out. To each Lmn is
assigned as many elements as accuracy and precision can allow. In a practical sense. five to
seven elements are suitable for fuzzification of Lnn in the state space. Membership functions
may be triangular or of simple functional type. The trade-off's between the number of
quantization in Lmn and the transition smoothness, the total numbers of Xim, X2n and the
performance are important and these issues are related to heuristics. For each rule, numbers
between O and 1 are stored for each vector array of one membership function. In our example.
a two-input two-output fuzzy controller has two vector arrays for the conditional parts and two
vector arrays for the action parts for each rule. The fuzzy sets for control inputs §; and &; are

denoted as 4 i and ©;, respectively.

3. Fuzzy inferencing Using Decomposition of Fuzzy Hypercubes

For practical purpose, a discrete version of fuzzy controllers is needed and it is convenient if
we utilize a decomposed fuzzy hypercube (7] which is suitable for implementing a fuzzy logic
controller with the cell-state mapping concept. Each rule numerically stored in a fuzzy
hypercube corresponds with each cell in the celi-state. For each rule, one membership function
in Xin is stored in the premise matrix no. 1, P1, and so is another in the premise matrix no. 2,
P2, and so on. Each row in P, or P2 is the membership function obtained in the stepwise pro-
cedure stated earlier. The same is true for the consequence matrices, C: and C. representing
4 and O, for each rule. Let the max-min product is denoted as “ o ”, then for given fuzzy sets
X in Xim and X2 in Xon, the control input fuzzy sets, 4 and ©, are obtained as

4 =CiTo{P1x)) % (P20Xj)} (8a)
©=CaT o {(P1 X1) ® (P20 Xo)} (8b)

where C/" is the transpose of the matrix Ci and “x” is the element-wise minimum operator. The

crisp results of 4 and © are

0 =DEFUZZIFIER(4 ) (9a)
6 = DEFUZZIFIER(O) (9b)

where DEFUZZIFIER(.) is a defuzzification operator chosen among the maximum criterion

method, the mean of maxima procedure, and the centroid algorithm.
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4. Application : Design of An Engine Idling Speed Fuzzy Controlier

Simulation Model: The well-known model for engine idling speed control has been rigorously
studied in {8,9]. For simulation input-state training pairs, we collect the data exhaustively for

the given fixed control values from the following highly nonlinear model:

x1 =N (Engine Rotor Speed), x2 =P (Manifold Pressure)
[Rotating Dynamics] dxi/dt=K. (Ti — Tw), (10a)
[Manifold Dynamics] dxa/dt =K, (m’a — m’ao) (10h)

where m’,=(1 + 0.9076 + 0.09986?) g(x2)

glx2)=[1 x2 < 50.66
0.0197 (101.325 x2 — x?)1/? x2 = 50.66

m’a0=-0.0005968 x, — 0.1336 x2 + 0.0005341 x1x2 + 0.000001757 x,X2>
Ti=-39.22 + 325024.0 ma — 0.0112 4% + 0.000675 4x,(27/60) + 0.635 9
+ 0.0216 x; (272/60) — 0.000102 x,2 (27/60)?

TL=1(x1/263.17)2 + T4 (TL:Load Torque, Tq4:Disturbance Torque)

Mao =M a0 {t — 7)/120x, 7= 120/4x: (Induction Power Delay), K, Ka: constants
Equations (10) are highly nonlinear two state engine model for idle speed control. We will ob-
tain cell-state transitions from the above model in order to derive fuzzy logic control rules that
stahilize and regulate the state trajectories toward the goal state, and in our case, the goal is N
=x, =750 (rpm), P=x2=35.0 (kPascal).

2
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Figure 3. state Trajectories for (52 = 22.0, &, =2.0) = Uy,
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Cell- State Transitions: As jn Step 1, we gathered 9 kinds of the complete state trajectories by
using 9 fixed controls from (3:,6,) to (33,63). Among them, the state trajectories of every initial
conditions for (52,61), (62,62), and (2,83), are shown in Figures 3-5. Initial states start from
the representative positions in the cell-state space. In Figure 4, we can find an equilibrium cell
with fixed (62,62) =Uas.

The next step (Step 2} is to find a chain of connections among the cells with the assigned
controls according to the chosen optimal strategy. This procedure is the most important one in
the design of fuzzy logic controllers. The finalized control rules are determined by using the
back tracking algorithm as shown in Figure 6. In our example, 5 elements are assigned to each
cell. Figure 6 represents the results of the performance criterion for the minimum squared er-

ror control and the simulation results are shown in Figure 7.
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Figure 6. Rule Base Based On The Minimum Squared Error Strategy (MSE)

Stratagy: Minimum Squared Error Control
P 80.0

—
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-12.0
Load Td = 0.000 (N Sanpling Period &t = 0.001 (sec)

Figure 7. sSimulation Results for The Minimum Squared Error Strategy (MSE)

In Figure 8, different optimal strategy has been chosen to compare the results and this case
is the minimum energy/control effort criterion. Moreover, Figure 9 represents the simulation
runs on different initial conditions.

In Figure 10, the responses of the minimum squared error (MSE) and the minimum control
effort (MCE) control results are shown with the inferred control actions together. Figure 10 (a)
and (b) are the idle speed control results for MSE and MCE, respectively, while (c) and (d)
represents the throttle angles for MSE and MCE. The membership functions for each fuzzy
subsets in the minimum energy based strategic control rule base are shown in Figure 11
where the premise part and the consequence part of fuzzy implications are represented. In Fig-

ure 11, each cell represents 5 elements in the universe of discourse for fuzzification.
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Figure 8. Rule Base Based On The Minimum Energy/Control Effort Strategy (MCE)
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Figure 9. gimulation Results for The Minimum Energy/Control Effort Strategy (MCE)
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Figure 10. Comparison of Simulation Results between MSE and MCE
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5. Conclusions

Even though we presented only a two-input two-output multivariable fuzzy logic control
scheme for the automated design of a fuzzy controller rule base, we can easily generalize the
systematic procedure for a m-input n-output multivariable fuzzy control system. The
automated production design of fuzzy logic control rule bases for different optimal control
strategies and the associated simulation results ensure versatility and flexibility of the
proposed cell-state transition method. Emphasis is placed upon the fact that, for given arbi-
trary systems, we can make fuzzy logic based control rule bases that stabilize the closed-loop
feedback control systems, and that the design procedure is totally automated. Furthermore, the

rules are determined according to the chosen optimal strategy.
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Figure 11. Fuzzy Logic Control Rule Base (30 Rules) of the Minimum Energy Strategy
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