• 제목/요약/키워드: Fuzzy Regression Analysis

검색결과 96건 처리시간 0.024초

Statistical Approach for Corrosion Prediction Under Fuzzy Soil Environment

  • Kim, Mincheol;Inakazu, Toyono;Koizumi, Akira;Koo, Jayong
    • Environmental Engineering Research
    • /
    • 제18권1호
    • /
    • pp.37-43
    • /
    • 2013
  • Water distribution pipes installed underground have potential risks of pipe failure and burst. After years of use, pipe walls tend to be corroded due to aggressive soil environments where they are located. The present study aims to assess the degree of external corrosion of a distribution pipe network. In situ data obtained through test pit excavation and direct sampling are carefully collated and assessed. A statistical approach is useful to predict severity of pipe corrosion at present and in future. First, criteria functions defined by discriminant function analysis are formulated to judge whether the pipes are seriously corroded. Data utilized in the analyses are those related to soil property, i.e., soil resistivity, pH, water content, and chloride ion. Secondly, corrosion factors that significantly affect pipe wall pitting (vertical) and spread (horizontal) on the pipe surface are identified with a view to quantifying a degree of the pipe corrosion. Finally, a most reliable model represented in the form of a multiple regression equation is developed for this purpose. From these analyses, it can be concluded that our proposed model is effective to predict the severity and rate of pipe corrosion utilizing selected factors that reflect the fuzzy soil environment.

Neuro-Fuzzy System for Predicting Optimal Weld Parameters of Horizontal Fillet welds

  • Moon, H.S.;Na, S.J.
    • International Journal of Korean Welding Society
    • /
    • 제1권2호
    • /
    • pp.36-44
    • /
    • 2001
  • To get the appropriate welding process variables, mathematical modeling in conjunction with many experiments is necessary to predict the magnitude of weld bead shape. Even though the experimental results are reliable, it has a difficulty in accurately predicting welding process variables for the desired weld bead shape because of nonlinear and complex characteristics of welding processes. The welding condition determined for the desired weld bead shape may cause the weld defect if the welding current/voltage/speed combination is improperly selected. In this study, the $2^{n-1}$ fractional factorial design method and correlation parameter were used to investigate the effect of the welding process variables on the fillet joint shape, and the multiple non-linear regression analysis was used for modeling the gas metal arc welding(GMAW)parameters of the fillet joint. Finally, a fuzzy rule-based method and a neural network method were proposed so that the complexity and non-linearity of arc welding phenomena could be effectively overcome. The performance of the proposed neuro-fuzzy system was evaluated through various experiments. The experimental results showed that the proposed neuro-fuzzy system could effectively check the welding conditions as to whether or not weld defects would occur, and also adjust the welding conditions to avoid these weld defects.

  • PDF

A comparative study on applicability and efficiency of machine learning algorithms for modeling gamma-ray shielding behaviors

  • Bilmez, Bayram;Toker, Ozan;Alp, Selcuk;Oz, Ersoy;Icelli, Orhan
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.310-317
    • /
    • 2022
  • The mass attenuation coefficient is the primary physical parameter to model narrow beam gamma-ray attenuation. A new machine learning based approach is proposed to model gamma-ray shielding behavior of composites alternative to theoretical calculations. Two fuzzy logic algorithms and a neural network algorithm were trained and tested with different mixture ratios of vanadium slag/epoxy resin/antimony in the 0.05 MeV-2 MeV energy range. Two of the algorithms showed excellent agreement with testing data after optimizing adjustable parameters, with root mean squared error (RMSE) values down to 0.0001. Those results are remarkable because mass attenuation coefficients are often presented with four significant figures. Different training data sizes were tried to determine the least number of data points required to train sufficient models. Data set size more than 1000 is seen to be required to model in above 0.05 MeV energy. Below this energy, more data points with finer energy resolution might be required. Neuro-fuzzy models were three times faster to train than neural network models, while neural network models depicted low RMSE. Fuzzy logic algorithms are overlooked in complex function approximation, yet grid partitioned fuzzy algorithms showed excellent calculation efficiency and good convergence in predicting mass attenuation coefficient.

CEO 핵심역량 구조분석 (Structure Analysis for Core Competency of CEO)

  • 박영만;황승국
    • 한국지능시스템학회논문지
    • /
    • 제25권1호
    • /
    • pp.85-90
    • /
    • 2015
  • 본 논문은 중소기업의 CEO의 핵심역량 24개를 FSM을 이용하여 구조분석을 하고 5개의 그룹으로 분류하였다. 또한 CEO의 업무별로 CEO의 업무능력과 핵심역량과의 관련성을 파악하기 위해 회귀분석을 실시하였다. 본 논문의 특징은 중소기업 CEO의 역량에 대한 분류와 구조화를 통한 층별 상호간의 관계를 알 수 있고, CEO의 업무능력에 무슨 역량그룹이 영향을 주는지를 알 수 있게 해준다.

A framework of Multi Linear Regression based on Fuzzy Theory and Situation Awareness and its application to Beach Risk Assessment

  • Shin, Gun-Yoon;Hong, Sung-Sam;Kim, Dong-Wook;Hwang, Cheol-Hun;Han, Myung-Mook;Kim, Hwayoung;Kim, Young jae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.3039-3056
    • /
    • 2020
  • Beaches have many risk factors that cause various accidents, such as drifting and drowning, these accidents have many risk factors. To analyze them, in this paper, we identify beach risk factors, and define the criteria and correlation for each risk factor. Then, we generate new risk factors based on Fuzzy theory, and define Situation Awareness for each time. Finally, we propose a beach risk assessment and prediction model based on linear regression using the calculated risk result and pre-defined risk factors. We use national public data of the Korea Meteorological Administration (KMA), and the Korea Hydrographic and Oceanographic Agency (KHOA). The results of the experiment showed the prediction accuracy of beach risk to be 0.90%, and the prediction accuracy of drifting and drowning accidents to be 0.89% and 0.86%, respectively. Also, through factor correlation analysis and risk factor assessment, the influence of each of the factors on beach risk can be confirmed. In conclusion, we confirmed that our proposed model can assess and predict beach risks.

퍼지 및 신경망 이론을 이용한 교통사고예측모형 개발에 관한 연구 (Development of Traffic Accidents Prediction Model With Fuzzy and Neural Network Theory)

  • 김장욱;남궁문;김정현;이수범
    • 대한교통학회지
    • /
    • 제24권7호
    • /
    • pp.81-90
    • /
    • 2006
  • 교통사고를 줄이기 위한 방안으로써 교통사고와 다양한 요인과의 관계를 규명하는 것이 시급한 현실의 과제일 것이다. 본 연구에서는 전북권의 교통사고가 가장 많고, 치사율이 가장 높은 국도 17호선(전주-남원)를 대상으로 교통사고의 원인이 되는 다양한 요인들이 교통사고에 어느 정도 영향을 미치고 있는지에 대하여 교통안전분야에서 자주 사용되어오던 다중회귀이론, 수량화이론을 적용하여 교통사고예측모델을 구축하였다. 또한 데이터의 불확실성 상태를 합리적으로 처리할 수 있는 퍼지 추론이론 및 인간의 신경계를 수학적으로 모형화하여 학습에 의한 예측에 있어 뛰어난 것으로 알려져 있는 신경망이론을 적용한 교통사고예측모델을 구축하였다 이를 통해, 퍼지추론이론 및 신경망 이론의 유효성을 입증하고 교통사고분석 분야의 적용 타당성을 확인하는데 초점을 맞추고 있다.

Assessment of slope stability using multiple regression analysis

  • Marrapu, Balendra M.;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.237-254
    • /
    • 2017
  • Estimation of slope stability is a very important task in geotechnical engineering. However, its estimation using conventional and soft computing methods has several drawbacks. Use of conventional limit equilibrium methods for the evaluation of slope stability is very tedious and time consuming, while the use of soft computing approaches like Artificial Neural Networks and Fuzzy Logic are black box approaches. Multiple Regression (MR) analysis provides an alternative to conventional and soft computing methods, for the evaluation of slope stability. MR models provide a simplified equation, which can be used to calculate critical factor of safety of slopes without adopting any iterative procedure, thereby reducing the time and complexity involved in the evaluation of slope stability. In the present study, a multiple regression model has been developed and tested its accuracy in the estimation of slope stability using real field data. Here, two separate multiple regression models have been developed for dry and wet slopes. Further, the accuracy of these developed models have been compared and validated with respect to conventional limit equilibrium methods in terms of Mean Square Error (MSE) & Coefficient of determination ($R^2$). As the developed MR models here are not based on any region specific data and covers wide range of parametric variations, they can be directly applied to any real slopes.

Integrated approach using well data and seismic attributes for reservoir characterization

  • Kim Ji- Yeong;Lim Jong-Se;Shin Sung-Ryul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.723-730
    • /
    • 2003
  • In general, well log and core data have been utilized for reservoir characterization. These well data can provide valuable information on reservoir properties with high vertical resolution at well locations. While the seismic surveys cover large areas of field but give only indirect features about reservoir properties. Therefore it is possible to estimate the reservoir properties guided by seismic data on entire area if a relationship of seismic data and well data can be defined. Seismic attributes calculated from seismic surveys contain the particular reservoir features, so that they should be extracted and used properly according to the purpose of study. The method to select the suitable seismic attributes among enormous ones is needed. The stepwise regression and fuzzy curve analysis based on fuzzy logics are used for selecting the best attributes. The relationship can be utilized to estimate reservoir properties derived from seismic attributes. This methodology is applied to a synthetic seismogram and a sonic log acquired from velocity model. Seismic attributes calculated from the seismic data are reflection strength, instantaneous phase, instantaneous frequency and pseudo sonic logging data as well as seismic trace. The fuzzy curve analysis is used for choosing the best seismic attributes compared to sonic log as well data, so that seismic trace, reflection strength, instantaneous frequency, and pseudo sonic logging data are selected. The relationship between the seismic attribute and well data is found out by the statistical regression method and estimates the reliable well data at a specific field location derived from only seismic attributes. For a future work in this study, the methodology should be checked an applicability of the real fields with more complex and various reservoir features.

  • PDF

가변 윈도우 기법을 적용한 통계적 공정 제어와 퍼지추론 기법을 이용한 소프트웨어 성능 변화의 빅 데이터 분석 (Big Data Analysis of Software Performance Trend using SPC with Flexible Moving Window and Fuzzy Theory)

  • 이동헌;박종진
    • 제어로봇시스템학회논문지
    • /
    • 제18권11호
    • /
    • pp.997-1004
    • /
    • 2012
  • In enterprise software projects, performance issues have become more critical during recent decades. While developing software products, many performance tests are executed in the earlier development phase against the newly added code pieces to detect possible performance regressions. In our previous research, we introduced the framework to enable automated performance anomaly detection and reduce the analysis overhead for identifying the root causes, and showed Statistical Process Control (SPC) can be successfully applied to anomaly detection. In this paper, we explain the special performance trend in which the existing anomaly detection system can hardly detect the noticeable performance change especially when a performance regression is introduced and recovered again a while later. Within the fixed number of sampling period, the fluctuation gets aggravated and the lower and upper control limit get relaxed so that sometimes the existing system hardly detect the noticeable performance change. To resolve the issue, we apply dynamically tuned sampling window size based on the performance trend, and Fuzzy theory to find an appropriate size of the moving window.

Neuro-fuzzy and artificial neural networks modeling of uniform temperature effects of symmetric parabolic haunched beams

  • Yuksel, S. Bahadir;Yarar, Alpaslan
    • Structural Engineering and Mechanics
    • /
    • 제56권5호
    • /
    • pp.787-796
    • /
    • 2015
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. The computation of design forces for the non-prismatic beams having symmetrical parabolic haunches (NBSPH) is fairly difficult because of the parabolic change of the cross section. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces and fixed-end moments becomes a complex problem. In this study, the efficiency of the Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) in predicting the design forces and the design moments of the NBSPH due to temperature changes was investigated. Previously obtained finite element analyses results in the literature were used to train and test the ANN and ANFIS models. The performances of the different models were evaluated by comparing the corresponding values of mean squared errors (MSE) and decisive coefficients ($R^2$). In addition to this, the comparison of ANN and ANFIS with traditional methods was made by setting up Linear-regression (LR) model.