• Title/Summary/Keyword: Fuzzy Nonlinear Control

Search Result 838, Processing Time 0.033 seconds

An Analysis of Cost Driver in Software Cost Model by Neural Network System

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.377-377
    • /
    • 2000
  • Current software cost estimation models, such as the 1951 COCOMO, its 1987 Ada COCOMO update, is composed of nonlinear models, such as product attributes, computer attributes, personnel attributes, project attributes, effort-multiplier cost drivers, and have been experiencing increasing difficulties in estimating the costs of software developed to new lift cycle processes and capabilities. The COCOMO II is developed fur new forms against the current software cost estimation models. This paper provides a case-based analysis result of the cost driver in the software cost models, such as COCOMO and COCOMO 2.0 by fuzzy and neural network.

  • PDF

An Effective Face Region Detection Using Fuzzy-Neural Network

  • Kim, Chul-Min;Lee, Sung-Oh;Lee, Byoung-ju;Park, Gwi-tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.102.3-102
    • /
    • 2001
  • In this paper, we propose a novel method that can detect face region effectively with fuzzy theory and neural network We make fuzzy rules and membership functions to describe the face color. In this algorithm, we use a perceptually uniform color space to increase the accuracy and stableness of the nonlinear color information. We use this model to extract the face candidate, and then scan it with the pre-built sliding window by using a neural network-based pattern-matching method to find eye. A neural network examines small windows of face candidate, and decides whether each window contains eye. We can standardize the face candidate geometrically with detected eyes.

  • PDF

Design of Power System Stabilizer applying fuzzy theory (퍼지이론을 적용한 전력계통안정화 장치 설계)

  • Lee, Ho-Jun;Park, Ji-Ho;Baek, Young-Sik;Shin, Jeong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.245-247
    • /
    • 1999
  • The problem of small-signal stability is usually one of insufficient damping of system oscillations. The use of power system stabilizers to control generator excitation system os the most cost effective method of enhancing the small-signal stability of power system. This paper presents the fuzzy type stabilizing controller to damp out the sustained oscillation, which is observed in normal operation. through the comparative simulation with PI type power stabilizer under various system operating condition, the efficiency of fuzzy stabilizing controller with respect to nonlinear power system is verified.

  • PDF

A Study on the Automation of Deburring Process Using Vision Sensor (비젼 센서를 이용한 디버링 공정의 자동화에 관한 연구)

  • 신상운;갈축석;강근택;안두성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.553-558
    • /
    • 1994
  • In this paper, we present a new approach for the automation of deburring process. An algorithm for teaching skills of a human expert to a robot manipulator is developed. This approach makes use of TSK fuzzy model that can express a highly nonlinear functional relation with small number of rules. Burr features such as height, width, area, cutting area are extracted from image processing by use of the vision system. Cutting depth, repeative number and normal cutting force are chosen as control signals representing actions of the human expert. It is verified that our processed fuzzy model can accurately express the skills of human experts for the deburring process.

  • PDF

Design an Anti-Skid System using Fuzzy Model-Based Controller (퍼지 모델 기반 제어기를 이용한 안티 스키드 시스템의 설계)

  • Lee, Sung-Ho;Kim, Young-Guk;Kim, Seog-Won;Park, Jin-Bae
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1276-1281
    • /
    • 2006
  • In general, the wheel-skid prevention of braking system is very important in modern railway applications. This is because wheel-skid can lead to an increase in noise and vibration from wheels with flat points, as well as an increased braking distance. However conventional anti-skid control has problems because wheel adhension and skid characteristics are very difficult nonlinear systems and time consuming to accurately model. In this paper, we design a fuzzy controller using a model of relation between ahdension and braking force, we show that anti-skid fuzzy controller has a very good performance, performing better than the previous conventional controller.

  • PDF

Design of The Robust Fuzzy Controller Using State Feedback Gain (상태궤환이득을 이용한 강건한 퍼지 제어기의 설계)

  • 홍대승
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.496-508
    • /
    • 1999
  • Fuzzy System which are based on membership functions and rules can control nonlinear uncertain complex systems well. However Fuzzy logic controller(FLC) has problems; It is difficult to design the stable FLC and FLC depends mainly on individual experience. Although FLC can be designed using the error back-propagation algorithm it takes long time to converge into global optimal parameters. Well-developed linear system theory should not be replaced by FLC but instead it should be suitably used with FLC. A new methodology is introduced for designing THEN-PART membership functions of FLC based on its well-tuned state feedback controller. A example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF

Advanced SOGI-FLL Scheme Based on Fuzzy Logic for Single-Phase Grid-Connected Converters

  • Park, Jin-Sang;Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.598-607
    • /
    • 2014
  • This paper proposes a frequency-locked loop (FLL) scheme for a single-phase grid-connected converter. A second-order generalized integrator (SOGI) based on fuzzy logic (FL) is applied to this converter to achieve precise phase angle detection. The use of this method enables the compensation of the nonlinear characteristic of the frequency error, which is defined in the SOGI scheme as the variation of the central frequency through the self-tuning gain. With the proposed scheme, the performance of the SOGI-FLL is further improved at the grid disturbances, which results in the stable operation of the grid converter under grid voltage sags or frequency variation. The PSIM simulation and experimental results are shown to verify the effectiveness of the proposed method.

A Study on AC Servo Motor Speed Control with Fuzzy Controller (퍼지제어기를 이용한 AC Servo Motor의 속도제어에 관한 연구)

  • Yoon, Hyung-Sang;Cha, In-Su;Lee, Kwun-Hyun;Park, Hae-Am
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.344-346
    • /
    • 1995
  • In this paper a drive strategy of AC Servo Motor using Fuzzy method was proposed. Since the transfer function of the plant is nonlinear and very complicated, there are difficultly in driving the system with real time. The performance of out method is confirmed by computer simulation and experimental results. The high performance and high accuracy of the driving system. Fuzzy is designed and proposed.

  • PDF

Automation of deburring process using vision sensor and TSK fuzzy model (비젼 센서와 TSK형 퍼지를 이용한 디버링 공정의 자동화)

  • Shin, Shang-Woon;Gal, Choog-Seug;Kang, Geun-Taek;Ahn, Doo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.102-109
    • /
    • 1996
  • In this paper, we present a new approach for the automation of deburring process. An algorithm for teaching skills of a human expert to a robot manipulator is developed. This approach makes use of TSK fuzzy mode that can wxpress a highly nonlinear functional relation with small number of rules. Burr features such as height, width, area, grinding area are extracted from image processing by use of the vision system. Grinding depth, repetitive number and normal grinding force are chosen as control signals representing actions of the human expert. It is verified that our proposed fuzzy model can accurately express the skills of human experts for the deburring process.

  • PDF

Design of T-S Fuzzy Model Based H Controller for Diving Control of AUV: An LMI Approach (무인 잠수정의 깊이 제어를 위한 T-S 퍼지 모델 기반 H 제어기 설계: 선형 행렬 부등식 접근법)

  • Jun, Sung-Woo;Kim, Do-Wan;Lee, Ho-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.441-447
    • /
    • 2012
  • This paper presents a design technique of a Takagi-Sugeno (T-S) fuzzy-model-based $H_{\infty}$ controller for autonomous underwater vehicles (AUVs). The design procedure aims to render the stabilizing controller which satisfies performance of the diving control for AUVs in the presence of the disturbance. A nonlinear AUV is modeled by the T-S fuzzy system through the sector nonlinearity. By using Lyapunov function, the sufficient conditions are derived to guarantee the performance of robust depth control in the format of linear matrix inequality (LMI). To succeed for diving control of AUV, we add the constraints on the diving and pitch angles in the LMI conditions. Through the simulation, we confirm the effectiveness of the proposed methodology.