An Analysis of Cost Driver in Software Cost Model by Neural Network System

Dong Hwa Kim

(Tel : 82-42-821-1170, Fax : 82-42-821-1165 ; E-mail: kimdah@tnut.ac.kr)
Department of Instrumentation & Control Eng., Tajon National University of Technology,
Yusong —gu Taejon, Korea

Abstract

Current software cost estimation models, such as the 1981
COCOMO, its 1987 Ada COCOMO update, is composed of
nonlinear models, such as product attributes, computer
attributes, personnel attributes, project attributes,
effort-multiplier cost drivers, and have been experiencing
increasing difficulties in estimating the costs of software
developed to new life cycle processes and capabilities.

The COCOMO 11 is developed for new forms against the
current software cost estimation models. This paper provides a
case-based analysis result of the cost driver in the software
cost models, such as COCOMO and COCOMO 2.0 by fuzzy
and neural network.

1. Introduction

Software development involves a number of interrelated
factors which affect development effort and productivity.
Accurate forecasting has proved difficult since many of these
relationships are not well understood. Improving the
estimation techniques available to project managers would
facilitate more effective control of time and budgets in
software development.

Most estimation models in use or proposed in the literature
are based on regression techniques[1,2]. A number of these
models are discussed in the following section. Statistical
regression models estimate software development effort as the
dependent variable. Software size (in metrics like lines of code
or function points) is used as an independent variable. In some
models other parameters such as development programming
language or operating system may be used as additional
independent variables for a multiple regression model.
Regression models have the advantage of a sound
mathematical basis as well as measures of goodness of fit, i.e.,
how well the curve matches the given dataset{2). This paper
examines the potential of two artificial intelligence approaches,
i.e., artificial neural networks and case-based reasoning, for
providing the basis for development effort estimation models
in contrast to regression models. Artificial neural networks
(ANNs) adopt a leaming approach to deriving a predictive
model. The network is designed for the specific set of inputs,
e.g., cost driver. The network is presented with a set of known
cases which is used to "train" the network, i.e., establish the
weights associated with each input in the network. Once the
network is trained and stable, development effort for a new
case can be predicted by substituting the relevant input values
for the specific case. ANNs are recognized for their ability to
provide good results when dealing with problems where there
are complex relationships between inputs and outputs (effort).

377

Although the potential for predictive accuracy is good,
neural networks lack an explanation capability and do not
provide an environment for direct user adaptation of results.

In software development effort estimation, each case
could be a previous software development while the current
problem is one of extracting a suitable estimate for the current
project. Adaptation is based on differences between the stored
case and the current problem, e.g., the original case may relate
to a system developed with an inexperienced programming
team whereas the current system developers may be very
familiar with the development environment.

This research compares the effectiveness of
back-propagation artificial neural networks in estimating
software development effort with the effectiveness of a neural
network model and a multiple linear regression model.

2. Software effort estimation models

Numerous models have been proposed for software
development effort estimation, e.g.,, COCOMO, SLIM,
Estimacs, Function Point Analysis (FPA) (Albrecht and
Gaffney, 1983, Function Point Counting Practices Manual,
1994; Symons, 1991), SPANS, Checkpoint and COSTAR.
However no model has proved to be outstandingly successful
at effectively and consistently predicting software
development effort. The models are based on regression
analysis of some set of past cases. Independent variables
include an estimate of system size (in lines of code or function
points). Matson et al. (1994) review some of the problems
associated with regression models, specifically as applied to
FPA. Miyazaki et al. (1994) propose a more robust form of
least squares calculation for determining parameter values
which they consider to be better able to deal with the outliers
prevalent in software effort estimation data. All the models
presume the ability to estimate system size early in the life
cycle which is a major weakness of the lines of code models.
FPA estimates can be generated reasonably accurately at an
early stage of the development.

The results indicate to what extent models suggested are
generalisable to different environments. Most models showed
a strong over-estimation bias and large estimation errors with
the mean absolute relative error (MARE) ranging from an
average of 57 percent to almost 800 percent. Felons and
Garner (1992) evaluated three development effort prediction
models (SPANS, Checkpoint and COSTAR) using 22 projects
from Albrecht's database, and 14 from Kemerer's dataset, The
prediction error is large, with the MARE ranging from 46
percent for the Checkpoint model to 105 percent for the
COSTAR model.

Jeffery and Low (1990) conducted a study to investigate the

