• 제목/요약/키워드: Fuzzy Logic Control

검색결과 1,464건 처리시간 0.031초

Optimal Fuzzy Control of Parallel Hybrid Electric Vehicles

  • Farrokhi, M.;Mohebbi, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.910-914
    • /
    • 2005
  • In this paper an optimal method based on fuzzy logic for controlling parallel hybrid electric vehicles is presented. In parallel hybrid electric vehicles the required torque for deriving and operating the on-board accessories is generated by a combination of internal-combustion engine and an electric motor. The powersharing between the internal combustion engine and the electric motor is the key point for efficient driving. This is a highly nonlinear and time varying plant and its control strategy will be implemented with the use of fuzzy logic controller. The fuzzy logic controller will be designed based on the state of charge of batteries and the desired torque for driving. The output of controller controls the throttle of the combustion engine. The main contribution of this paper is the development of an optimal control based on fuzzy logic, which maximizes the output torque of the vehicle while minimizing fuel consumed by the combustion engine.

  • PDF

퍼지-신경망 제어기를 이용한 2지역 계통의 부하주파수제어에 관한연구 (A Study on the Load Frequency Control of 2-Area Power System using Fuzzy-Neural Network Controller)

  • 정형환;김상효;주석민;이정필;이동철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권2호
    • /
    • pp.97-106
    • /
    • 1999
  • This paper proposes the structure and the algorithm of the Fuzzy-Neural Controller(FNNC) which is able to adapt itself to unknown plant and the change of circumstances at the Fuzzy Logic Controller(FLC) with the Neural Network. This Learning Fuzzy Logic Controller is made up of Fuzzy Logic controller in charge of a main role and Neural Network of an adaptation in variable circumstances. This construct optimal fuzzy controller applied to the 2-area load frequency control of power system, and then it would examine fitness about parameter variation of plant or variation of circumstances. And it proposes the optimal Scale factor method wsint three preformance functions( E, , U) of system dynamics of load frequency control with error back-propagation learning algorithm. Applying the controller to the model of load frequency control, it is shown that the FNNC method has better rapidity for load disturbance, reduces load frequency maximum deviation and tie line power flow deviation and minimizes reaching and settling time compared to the Optimal Fuzzy Logic Controller(OFLC) and the Optimal Control for optimzation of performance index in past control techniques.

  • PDF

자전 안정화 플랫트폼 위치제어용 퍼지 논리 제어기 설계 (The design of a fuzzy logic controller for the pointing loop of the spin-stabilized platform)

  • 유인억;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.112-116
    • /
    • 1992
  • In this paper, a fuzzy logic controller(FLC) is designed for the pointing loop of the spin-stabilized platform. For the fuzzy inference, a fuzzy accelerator board using the Togai InfraLogic software and digital fuzzy processor(DFP110FC) is designed, and a validation of an algorithm for fuzzy logic control is also presented. The pointing loop of the spin-stabilized platform using FLC has better performance of step responses than a proportional controller in case of same loop hain through the software simulation and the experiment of implemented hardware.

  • PDF

게인 스케줄링 퍼지제어의 비행제어에 대한 적용 (Gain Scheduled Fuzzy Control on Aircraft Flight Control)

  • 홍성경;심규홍;박성수
    • 제어로봇시스템학회논문지
    • /
    • 제10권2호
    • /
    • pp.125-130
    • /
    • 2004
  • This paper describes an approach for synthesizing a Fuzzy Logic Controller(FLC) that combines the benefits of fuzzy logic control and fuzzy logic gain scheduling for the F/A-18 aircraft. Specially, fuzzy rules are utilized on-line to determine the denoralization factor(Κ) of a feedback fuzzy controller based on the dynamic pressure(Q) indicateing the region of the flight envelop the aircraft is operating in. Simulation results demonstrate that the proposed FLC provides excellent compensation for time-varying and/or nonlinear characteristics of the aircraft, and that it also exhibits satisfactory robustness with noisy air data sensors.

자동 학습 퍼지 제어기를 이용한 발전용 보일러 시스템 제어에 관한 연구 (A Study on the Boiler System Control of Fossil-Power Plant Using a Self-organizing Fuzzy Logic Control)

  • 문운철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권11호
    • /
    • pp.514-519
    • /
    • 2001
  • This Paper presents an application of a on-line self-organizing fuzzy logic controller to a boiler system of fossil-power plant. A boiler-turbine system is described as a MIMO nonlinear system in this paper. Then, three single loop fuzzy logic controllers are designed independently. The control rules and the membership functions of proposed fuzzy logic control system are generated automatically without using plant model. The simulation shows successful results for wide range operation of boiler system of fossil-power plant.

  • PDF

Modularized Gain Scheduled Fuzzy Logic Control with Application to Nonlinear Magnetic Bearings

  • Hong, Sung-Kyung
    • 한국지능시스템학회논문지
    • /
    • 제9권4호
    • /
    • pp.384-388
    • /
    • 1999
  • This paper describes an approach for synthesizing a modularized gain scheduled PD type fuzzy logic controller(FLC) of nonlinear magnetic bearing system where the gains of FLC are on-line adapted according to the operating point. Specifically the systematic procedure via root locus technique is carried out for the selection of the gains of FLC. Simulation results demonstrate that the proposed gain scheduled fuzzy logic controller yields not only maximization of stability boundary but also better control performance than a single operating point (without gain scheduling)fuzzy controller.

  • PDF

유연 링크 로봇의 제어 (Fuzzy -Logic Controller for Flexible-Link Manipulators)

  • 강재용;박종현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.342-345
    • /
    • 1995
  • This paper describes the design process and the experimental results of a fuzzy logic controller to control the tip position of a fixible-link manipulator, directly driven by a AC motor, with a large payload. The joint angle fuzzy logic controller is designed without a costly nonlinear system analysis of the flexible manipulator and the AC motor drive system. The state variables for the fuzzy logic controller are joint angle, joint velocity, link deflection, and link deflection velocity. The simulation and experimental results show that the joint position control is not satisfactory when the controller is designed under the assumption of no link flexibility and that stable joint position control and link vibration suppression can be cahieved with the fuzzy logic controller suggested in this paper.

  • PDF

퍼지논리제어기를 이용한 차량의 궤적제어 (Vehicle Trajectory Control using Fuzzy Logic Controller)

  • 이승종;조현욱
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.91-99
    • /
    • 2003
  • When the driver suddenly depresses the brake pedal under critical conditions, the desired trajectory of the vehicle can be changed. In this study, the vehicle dynamics and fuzzy logic controller are used to control the vehicle trajectory. The dynamic vehicle model consists of the engine, the rotational wheel, chassis, tires and brakes. The engine model is derived from the engine experimental data. The engine torque makes the wheel rotate and generates the angular velocity and acceleration of the wheel. The dynamic equation of the vehicle model is derived from the top-view vehicle model using Newton's second law. The Pacejka tire model formulated from the experimental data is used. The fuzzy logic controller is developed to compensate for the trajectory error of the vehicle. This fuzzy logic controller individually acts on the front right, front left, rear right and rear left brakes and regulates each brake torque. The fuzzy logic controlling each brake works to compensate for the trajectory error on the split - $\mu$ road conditions follows the desired trajectory.

단일 입력 퍼지논리제어기의 안정성 분석 (Stability Analysis of Single-input Fuzzy Logic Controller)

  • 최병재
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.47-51
    • /
    • 2001
  • According as the controlled plants become more complex and large-scaled, the development of more intelligent control schemes is required in the control field. A fuzzy logic control (FLC) is one of proper schemes for this tendency. Recently, fuzzy control has been applied successfully to many industrial applications due to a number of advantages. But it still has some disadvantages. The conventional FLC has many tuning parameters: membership functions, scaling factors, and so forth. In order to improve this problem, a single-input fuzzy logic control (SFIC) which greatly simplifies the design process of the conventional FLC was proposed. Many research has also been proposed to develop the stability analysis of the FLC. In this paper we analyze the absolute stability of the SFLC. We first expand a nonlinear controlled plant into a Taylor series about a nominal operating point. And a fuzzy control system is transformed into a Lure system with nonlinearities. We also prove that the closed-loop system with the SFLC satisfies the sector condition globally.

  • PDF

PID auto-tuning controller design via fuzzy logic

  • He, Wei;Yu, Tian;Zhai, Yujia
    • 한국융합학회논문지
    • /
    • 제4권4호
    • /
    • pp.31-40
    • /
    • 2013
  • PID auto-tuning controller was designed via fuzzy logic. Typical values such as error and error derivative feedbackwere changed as heuristic expressions, and they determine PID gain through fuzzy logic and defuzzification process. Fuzzy procedure and PID controller design were considered separately, and they are combined and analyzed. Obtained auto-tuning PID controller by Fuzzy Logic showed the ability for less than 3rd order plant control.