• Title/Summary/Keyword: Fuzzy Functions

Search Result 941, Processing Time 0.028 seconds

Data Fusion of Mineral Exploration Data Sets and Its Application Using Fuzzy Set Theory (광물자원탐사 자료에 대한 데이터 통합과 그 응용사례)

  • Sungwon Choi
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.537-544
    • /
    • 1999
  • In mineral exploration, there are many data sets which need to be created, processed and analyzed in order to discover a favorable mineralized zone. Recently, with Geographic Information System (GIS), such exploration data sets have been able to be systematically stored and effectively processed using computer technologies. In this study, most exploration data sets were first digitized and then rasterized. Furthermore, they were integrated together by using fuzzy set theory to provide a possibility map toward a target hypothesis. Our target hypothesis is "there is a skarn magnetite deposit in this study" and all fuzzy membership functions were made with respect to the target hypothesis. Test area is extended from 37:00N/l28:30E to 37:20N/I28:45E, approximately 20 km by 40 km. This area is a part of Taebaeksan mineralized areas, where the Sinyemi mine, a skarn magnetite deposit, is located. In final resultant map, high potential or possibility area coincides with the location of the Shinyemi mine. In this regard, we conclude the fuzzy set theory can be effectively applied to this study and provides an excellent example to define potential area for further mineral exploration.

  • PDF

Detection of Premature Ventricular Contraction Using Discrete Wavelet Transform and Fuzzy Neural Network (이산 웨이블릿 변환과 퍼지 신경망을 이용한 조기심실수축 추출)

  • Jang, Hyoung-Jong;Lim, Joon-Shik
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.3
    • /
    • pp.451-459
    • /
    • 2009
  • This paper presents an approach to detect premature ventricular contraction(PVC) using discrete wavelet transform and fuzzy neural network. As the input of the algorithm, we use 14 coefficients of d3, d4, and d5, which are transformed by a discrete wavelet transform(DWT). This paper uses a neural network with weighted fuzzy membership functions(NEWFM) to diagnose PVC. The NEWFM discussed in this paper classifies a normal beat and a PVC beat. The size of the window of DWT is $-31/360{\sim}+32/360$ second(64 samples) whose center is the R wave. Using the seven records of the MIT-BIH arrhythmia database used in Shyu's paper, the classification performance of the proposed algorithm is 99.91%, which outperforms the 97.04% of Shyu's analysis. Using the forty records of the M1T-BIH arrhythmia database used in Inan's paper, the classification performance of the proposed algorithm is 98.01%, which outperforms 96.85% of Inan's one. The SE and SP of the proposed algorithm are 84.67% and 99.39%, which outperforms the 82.57% and 98.33%, respectively, of Inan's study.

  • PDF

Multi-Objective Optimization of Steel Structures Using Fuzzy Theory (퍼지 이론을 이용한 강구조물의 다목적 최적설계)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.153-163
    • /
    • 2004
  • The main objective of this study is to develop a multi-objective fuzzy optimum design program of steel structures and to verify that the multi-objective fuzzy optimum design is more reasonable than the single objective optimum design in real structural design. In the optimization formulation, the objective functions are both total weight and deflection. The design constraints are derived from the ultimate strength of service ability requirement of AISC-LRFD specification. The structural analysis was performed by the finite element method and also considered geometric non-linearity. The different importance of optimum criteria were reflected with two weighting methods ; membership weighting method and objective weighting method. Thus, designers could choose rational optimum solution of structures with application of two weighting methods.

A Fuzzy Weights Decision Method based on Degree of Contribution for Recognition of Insect Footprints (곤충 발자국 인식을 위한 기여도 기반의 퍼지 가중치 결정 방법)

  • Shin, Bok-Suk;Cha, Eui-Young;Woo, Young-Woon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.55-62
    • /
    • 2009
  • This paper proposes a decision method of fuzzy weights by utilizing degrees of contribution in order to classify insect footprint patterns having difficulties to classify species clearly. Insect footprints revealed delicately in the form of scattered spots since they are very small. Therefore it is not easy to define shape of footprints unlike other species, and there are lots of noises in the footprint patterns so that it is difficult to distinguish those from correct data. For these reasons, the extracted feature set has obvious feature values with some uncertain feature values, so we estimate weights according to degrees of contribution. If the one of feature values has distinct difference enough to decide a class among other classes, high weight is assigned to make classification. A calculated weight determines the membership values by fuzzy functions and objects are classified into the class having a superior value.atu present experimental resultseighrontribution. Iinsect footprints with noises by the proposed method.

Matchmaker: Fuzzy Vault Scheme for Weighted Preference (매치메이커: 선호도를 고려한 퍼지 볼트 기법)

  • Purevsuren, Tuvshinkhuu;Kang, Jeonil;Nyang, DaeHun;Lee, KyungHee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.2
    • /
    • pp.301-314
    • /
    • 2016
  • Juels and Sudan's fuzzy vault scheme has been applied to various researches due to its error-tolerance property. However, the fuzzy vault scheme does not consider the difference between people's preferences, even though the authors instantiated movie lover' case in their paper. On the other hand, to make secure and high performance face authentication system, Nyang and Lee introduced a face authentication system, so-called fuzzy face vault, that has a specially designed association structure between face features and ordinary fuzzy vault in order to let each face feature have different weight. However, because of optimizing intra/inter class difference of underlying feature extraction methods, we can easily expect that the face authentication system does not successfully decrease the face authentication failure. In this paper, for ensuring the flexible use of the fuzzy vault scheme, we introduce the bucket structure, which differently implements the weighting idea of Nyang and Lee's face authentication system, and three distribution functions, which formalize the relation between user's weight of preferences and system implementation. In addition, we suggest a matchmaker scheme based on them and confirm its computational performance through the movie database.

Fuzzy Control of Smart Base Isolation System using Genetic Algorithm (유전자알고리즘을 이용한 스마트 면진시스템의 퍼지제어)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.37-46
    • /
    • 2005
  • To date, many viable smart base isolation systems have been proposed and investigated. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively, of the smart base isolation system. A fuzzy logic controller (FLC) is used to modulate the MR damper because the FLC has an inherent robustness and ability to handle non linearities and uncertainties. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. This method is efficient in improving local portions of chromosomes. Neuro fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find optimal fuzzy rules and the GA optimized FLC outperforms not only a passive control strategy but also a human designed FLC and a conventional semi active control algorithm.

Modeling the Distribution Demand Estimation for Urban Rail Transit (퍼지제어를 이용한 도시철도 분포수요 예측모형 구축)

  • Kim, Dae-Ung;Park, Cheol-Gu;Choe, Han-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.25-36
    • /
    • 2005
  • In this study, we suggested a new approach method forecasting distribution demand of urban rail transit usign fuzzy control, with intend to reflect irregularity and various functional relationship between trip length and distribution demand. To establish fuzzy control model and test this model, the actual trip volume(production, attraction and distribution volume) and trip length (space distance between a departure and arrival station) of Daegu subway line 1 were used. Firstly, usign these data we established a fuzzy control model, nd the estimation accuracy of the model was examined and compared with that of generalized gravity model. The results showed that the fuzzy control model was superior to gravity model in accuracy of estimation. Therefore, wwe found that fuzzy control was able to be applied as a effective method to predict the distribution demand of urban rail transit. Finally, to increase the estimation precision of the model, we expect studies that define membership functions and set up fuzzy rules organized with neural networks.

Wavelet-Based Minimized Feature Selection for Motor Imagery Classification (운동 형상 분류를 위한 웨이블릿 기반 최소의 특징 선택)

  • Lee, Sang-Hong;Shin, Dong-Kun;Lim, Joon-S.
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.27-34
    • /
    • 2010
  • This paper presents a methodology for classifying left and right motor imagery using a neural network with weighted fuzzy membership functions (NEWFM) and wavelet-based feature extraction. Wavelet coefficients are extracted from electroencephalogram(EEG) signal by wavelet transforms in the first step. In the second step, sixty numbers of initial features are extracted from wavelet coefficients by the frequency distribution and the amount of variability in frequency distribution. The distributed non-overlap area measurement method selects the minimized number of features by removing the worst input features one by one, and then minimized six numbers of features are selected with the highest performance result. The proposed methodology shows that accuracy rate is 86.43% with six numbers of features.

A novel evidence theory model and combination rule for reliability estimation of structures

  • Tao, Y.R.;Wang, Q.;Cao, L.;Duan, S.Y.;Huang, Z.H.H.;Cheng, G.Q.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.507-517
    • /
    • 2017
  • Due to the discontinuous nature of uncertainty quantification in conventional evidence theory(ET), the computational cost of reliability analysis based on ET model is very high. A novel ET model based on fuzzy distribution and the corresponding combination rule to synthesize the judgments of experts are put forward in this paper. The intersection and union of membership functions are defined as belief and plausible membership function respectively, and the Murfhy's average combination rule is adopted to combine the basic probability assignment for focal elements. Then the combined membership functions are transformed to the equivalent probability density function by a normalizing factor. Finally, a reliability analysis procedure for structures with the mixture of epistemic and aleatory uncertainties is presented, in which the equivalent normalization method is adopted to solve the upper and lower bound of reliability. The effectiveness of the procedure is demonstrated by a numerical example and an engineering example. The results also show that the reliability interval calculated by the suggested method is almost identical to that solved by conventional method. Moreover, the results indicate that the computational cost of the suggested procedure is much less than that of conventional method. The suggested ET model provides a new way to flexibly represent epistemic uncertainty, and provides an efficiency method to estimate the reliability of structures with the mixture of epistemic and aleatory uncertainties.

Design of Fuzzy Clustering-based Neural Networks Classifier for Sorting Black Plastics with the Aid of Raman Spectroscopy (라만분광법에 의한 흑색 플라스틱 선별을 위한 퍼지 클러스터링기반 신경회로망 분류기 설계)

  • Kim, Eun-Hu;Bae, Jong-Soo;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1131-1140
    • /
    • 2017
  • This study is concerned with a design methodology of optimized fuzzy clustering-based neural network classifier for classifying black plastic. Since the amount of waste plastic is increased every year, the technique for recycling waste plastic is getting more attention. The proposed classifier is on a basis of architecture of radial basis function neural network. The hidden layer of the proposed classifier is composed to FCM clustering instead of activation functions, while connection weights are formed as the linear functions and their coefficients are estimated by the local least squares estimator (LLSE)-based learning. Because the raw dataset collected from Raman spectroscopy include high-dimensional variables over about three thousands, principal component analysis(PCA) is applied for the dimensional reduction. In addition, artificial bee colony(ABC), which is one of the evolutionary algorithm, is used in order to identify the architecture and parameters of the proposed network. In experiment, the proposed classifier sorts the three kinds of plastics which is the most largely discharged in the real world. The effectiveness of the proposed classifier is proved through a comparison of performance between dataset obtained from chemical analysis and entire dataset extracted directly from Raman spectroscopy.