
301

Journal of The Korea Institute of Information Security & Cryptology
VOL.26, NO.2, Apr. 2016

ISSN 1598-3986(Print)
ISSN 2288-2715(Online)

http://dx.doi.org/10.13089/JKIISC.2016.26.2.301

매치메이커: 선호도를 고려한 퍼지 볼트 기법*

툽 신 후,1† 강 전 일,1 양 대 헌,1 이 경 희2‡

1
인하대학교,

2
수원대학교

Matchmaker: Fuzzy Vault Scheme for Weighted Preference*

Tuvshinkhuu Purevsuren,1† Jeonil Kang,1 DaeHun Nyang,1 KyungHee Lee2‡

1
INHA University,

2
The university of Suwon

요 약

Juels와 Sudan의 퍼지 볼트 기법은 기법이 갖는 오류 내성 때문에 많은 연구에 사용 되어오고 있다. 그러나 이

들의 퍼지 볼트 기법은 그들의 논문에서 영화 애호가 문제를 예를 들었음에도 불구하고, 사람들이 일반적으로 갖는

선호도(preference)의 차이에 대한 고려가 존재하지 않는다. 한편, Nyang과 Lee는 안전하고 성능이 좋은 얼굴

인증 시스템을 만들기 위해서, 얼굴 특징이 서로 다른 가중치를 갖도록 얼굴 특징과 퍼지 볼트(vault) 사이에 특별

한 연관 구조를 갖는 얼굴 인증 시스템(이른바, 퍼지 얼굴 볼트)을 소개하였다. 그러나 그들의 기법은 일반적인 특

징 추출 기법들이 클래스 내부/간 차이를 최적화하려는 특성이 있기 때문에 인증 실패율을 성공적으로 낮추지 못할

것으로 쉽게 예상할 수 있다. 이 논문에서는 퍼지 볼트의 유연성을 제공해주기 위하여 Nyang과 Lee의 퍼지 볼트

기반의 얼굴 인증 시스템에서 가중치 아이디어를 다른 방식으로 구현한 버킷(bucket) 구조와 사용자 선호도와 시스

템 구현 간 관계를 공식화하는 세 가지 분포 함수에 대해서 소개한다. 또한 이를 바탕으로 선호도 매치메이커

(preference matchmaker) 기법을 제안하며, 영화 데이터베이스를 이용하여 이러한 매치메이커의 연산 성능을

확인해본다.

ABSTRACT

Juels and Sudan’s fuzzy vault scheme has been applied to various researches due to its error-tolerance property. However, the

fuzzy vault scheme does not consider the difference between people’s preferences, even though the authors instantiated movie

lover’ case in their paper. On the other hand, to make secure and high performance face authentication system, Nyang and Lee

introduced a face authentication system, so-called fuzzy face vault, that has a specially designed association structure between

face features and ordinary fuzzy vault in order to let each face feature have different weight. However, because of optimizing

intra/inter class difference of underlying feature extraction methods, we can easily expect that the face authentication system does

not successfully decrease the face authentication failure. In this paper, for ensuring the flexible use of the fuzzy vault scheme,

we introduce the bucket structure, which differently implements the weighting idea of Nyang and Lee’s face authentication

system, and three distribution functions, which formalize the relation between user’s weight of preferences and system

implementation. In addition, we suggest a matchmaker scheme based on them and confirm its computational performance through

the movie database.

Keywords: Reed-Solomon decoding, Berlekamp-Welch algorithm, weighted fuzzy vault, matchmaker

*

Received(07. 03. 2015), Modified(1st: 11. 27. 2015,

2nd: 03. 31. 2016), Accepted(04. 11. 2016)

* 이 논문은 2014년도 정부(교육과학기술부)의 재원으로 한국

연구재단의 기초연구사업 지원을 받아 수행된 것임(NRF-2

†

014R1A1A2059852)

†주저자, tuvi@isrl.kr

‡교신저자, khlee@suwon.ac.kr(Corresponding author)

302 매치메이커: 선호도를 고려한 퍼지 볼트 기법

I. Introduction

 The fuzzy vault, which is introduced by

Juels and Sudan in 2002[1], is a useful

cryptographic tool. It provides a user to

lock her or his secret using a set and

another user to unlock the secret using

another set if two sets are sufficiently

overlapped. In their paper, the authors

instance the movie lover who wants to

find someone with similar preference. Due

to its error-tolerance property, the fuzzy

vault scheme has been utilized in various

researches, especially in biometrics area

[2-11].

 In 2007, Nyang and Lee proposed a face

authentication system, so-called fuzzy face

vault, based on the fuzzy vault

scheme[12]. In the system, the authors

introduce the concept of weighted features.

Features, for a face, are represented as a

vector and used for comparing with other

face features. In the comparison, some

methods of extracting features from faces

such as principal component analysis

(PCA) and linear discriminant analysis

(LDA) use geometric distances. In a

feature vector, there are significant or less

significant features. Therefore, when the

fuzzy vault scheme is applied to face

authentication system, the authentication

failure (in terms of false acceptance or

false rejection) may increase if one feature

is mapped to only one point. To

compensate the loss of significance, the

method of weighting features is essential

in [12]. However, their face authentication

scheme does not seem to decrease the

authentication failure because it still uses

geometric distances to find correct features

and chaff features are located within

narrow ranges.

 In this paper, we newly suggest a

weighted fuzzy vault scheme. Our

contributions in this paper are as follows:

1) We introduce ‘bucket’ structure for

implementing the weighting idea in a

different manner for the ordinary fuzzy

vault scheme. By doing so, we can make

the fuzzy vault scheme to be used not only

in equal preference environments, but also

in weighted preference environments. 2)

We propose three distribution functions for

guaranteeing the flexible use of the fuzzy

vault scheme to various applications. They

formalize the relation between user’s

preference and system implementation, so

that they directly affect the usability and

security of the system. As an example of

our proposal, we implement the movie

matchmaker system.

 The rest of this paper is organized as

follows. In Section 2, we briefly address

the polynomial and Reed-Solomon (RS)

error correction code. In Section 3, we

analyze the fuzzy face vault. In Section 4,

we introduce our proposal, matchmaker.

The computational performance of the

matchmaker is shown in Section 5. In

Section 6, we discuss some issues related

the matchmaker. Section 7 includes the

conclusion.

II. Preliminaries

2.1 Polynomial over Galois field

 Galois field 

 is field that has finite

elements with the order , where  is a

prime number and  is a natural number.

Each element in 

 can be represented to

a vector such as ⋯ ∈. When

  and ≠,  is often referred to as

‘prime field.’ When ≠ and   ,  is

often referred to as ‘binary field.’

 Over a Galois field , a polynomial

정보보호학회논문지 (2016. 4) 303

Fig. 1. Reed-Solomon encoding and its

parameters

  ⋯  
 can be

defined as a set of points ∈.

For example,    over 

can be determined as   

    . If we gather  or

more points on , we can reconstruct

 though the Gaussian elimination.

2.2 Reed-Solomon error-correcting code

 RS code is a group of error-correcting

codes[13]. It is able to detect and correct

multiple errors from the received code

word. As shown in Fig.1, there is RS code

with parameters , , and : the number

of all possible elements , a code word

length ≤ , and a message length

≤ . Each element is interpreted as

Galois field .

 As the original view of RS code, our

intention is to interpret an original

message  ⋯ as coefficient

of a certain polynomial   





 over

. To compute the code word,  is

evaluated at  distinct elements  

⋯ . The code word is equal to

 ⋯ . If  ⋯  are

unknown, the code word should be

represented as the set of points such as

 ⋯.

 To decode the code word, many

algorithms were introduced: Berlekamp-

Welch[14], Berlekamp-Massey[15], Euclid’s

algorithm[16], Gao[17] and so on. In this

paper, we used Berlekamp-Welch

algorithm for our experiments.

 In  Berlekamp-Welch algorithm,

the upper bound of errors that can be

corrected is less than . In other

word,

   


, (1)

where  denotes the number of errors.

Berlekamp-Welch algorithm returns a

non-zero polynomial  of degree at

most .

 To recover , Berlekamp-Welch

algorithm first computes non-zero error

locator polynomial  of degree  and

 of degree , and computes

  . Computing  and

 are as difficult as computing .

While each of these polynomials are

difficult to find individually, the pair of

polynomials   can be found in

polynomial time (i.e., ). Berlekamp-

Welch algorithm successfully returns 

if  divides  without any

remainder.

2.3 Symbols and their explanations

 In this paper, we use the following

symbols show in Table 1. for simplicity of

description.

III. Nyang and Lee’s Fuzzy Face Vault

 In the fuzzy vault scheme, every

preferences have equal strength. In other

words, each preference is transformed a

certain amount of points on the secret

polynomial. Therefore, the fuzzy vault

scheme cannot be directly applied to the

304 매치메이커: 선호도를 고려한 퍼지 볼트 기법

explanation

Reed-Solomon code parameters

 Galois field

 the size of message

 the size of code word

 the order of Galois field

 the number of maximum errors

 (secret) polynomial

distribution function

 weight distribution

 chaff distribution

 code word distribution

set

 -th bucket, a set of preferences

 a set of counterfeits in 



a set of points derived from  , 


and 
: a set of points derived from

favorite and counterfeits in  ,

 
∪





a set of x-coordinates derived from  ,


 and 

: a set of x-coordinates

derived from favorite and counterfeits

in  ,  
∪



etc.

 the number of user’s favorites

′ the number of buckets


user information such as name,

telephone number, and address

 (cryptographic) hash function

 random element generator, ≠

 symmetric encryption function

 symmetric decryption function

Table 1. Symbols and their explanations

environments that different strength of

preferences should be considered.

 In 2007, Nyang and Lee introduced a

face authentication system based on the

fuzzy vault, so-called the fuzzy face

vault[12]. In their paper, the authors

illustrated their scheme in the face

verification system. Different from the

fuzzy vault scheme, the fuzzy face vault

has two-layered structure: it consists of

intermediate and coordinate layer.

 In the intermediate layer, a single

captured feature (e.g., an element of a

feature vector) is transferred to several

number of X-Y coordinates. In the

coordinate layer is created by RS code

word representing a secret as a polynomial

 as the ordinary fuzzy vault does.

3.1 Locking and unlocking procedures

 In the paper of Nyang and Lee[1], the

features are obtained by using a classifier

(e.g., PCA or LDA) from facial images.

The weights of the features can be

proportionally decided according to the

distribution of features’ differences.

 Let  ⋯ be a set of genuine

features. To lock a vault in the fuzzy face

vault scheme, a feature  with a certain

weight  is reconstructed as

  ∈≤ ≤ (2)

where   denotes one way and collision

free hash function. And then, the system

randomly generates a secret polynomial

. The system stores a set of points

∈∪∪⋯ with chaff features on

the intermediate layer and chaff points on

the coordinate layer. Note that every chaff

points should be matched to certain chaff

features. As the result, higher weighted

features are mapped into more points.

 To unlock the vault, the user inputs

her or his features. As doing similar task

with the locking procedure, the system

collects the points on the coordinate layer.

By using RS decoding algorithm,  can

be recovered from the collected points

when the number of errors caused

mistakenly capturing is less than a certain

threshold.

정보보호학회논문지 (2016. 4) 305

3.2 Difficulty of implementation

 To determine feature on the intermediate

layer, the fuzzy face value uses the

geometric distance measurement such as

Euclidean and Manhattan distances.

Therefore, too many chaffs on intermediate

layer are not desirable because the

distance between genuine and chaff

feature may be closer than threshold for

error tolerance.

 In PCA, for example, the distribution of

features’ differences (between maximum

and minimum values) seems to be lied on

exponential curve. It means that matching

on the most significant feature (on the

intermediate layer) may derive the half of

genuine points (on the coordinate layer) to

reconstruct the secret polynomial. Thus, to

guarantee the minimum level of security

(e.g., ), the system should add

more chaffs for more significant features.

In this case, the system may not correctly

find significant features even user

correctly input her or his genuine facial

image. Even if two values are really

similar, their hashed values are totally

differentiated. Therefore, chaff features

must not be located within reasonable

error bound (in terms of differences of

inter-class and/or intra-class). Considering

feature extraction methods optimize the

differences, the fuzzy face vault does not

seem to work with the facial verification

and authentication system because we

cannot avoid the chaff features to be

located within error bound (i.e., difference

of intra-class).

IV. Our Proposal: Weighted Fuzzy Vault

 Even though Nyang and Lee’s fuzzy face

vault scheme does not seem to work as

their expectation, the weighting idea is

reasonable. In this paper, rather than

improving the fuzzy face vault, we

generalize the fuzzy vault to cover various

applications by implementing weighting

idea in a different manner. As one of

applications, we introduce the

matchmaker, which helps people to find

out other people who have the similar

preferences without revealing their

preferences.

4.1 Overview

 People may have different preference in

different issues or areas. Someone who has

a big concern about movies may not have

any concern about sports stars. Even

though two girls like the same celebrities,

their most favorite celebrities may be

different. A question may arise when we

use the ordinary fuzzy vault for checking

their preferences: can we say that they

have the similar preference? To answer

the question, we can make the following

system, so called ‘matchmaker.’

 The matchmaker consists of two

procedures: template making and user

searching. In the template making

procedure, a user must offer their

favorites with certain weight values. For

example, Alice may input “Alice in

wonderland” with weight value 10 and

“Harry Potter and the Half-Blood Prince”

with weight value 2. The matchmaker

system makes a Alice’s template and

stores it. In the user searching procedure,

another user also must offer their

favorites without weight values. For

example, Bob may input “Alice in

wonderland” and “Harry Potter and the

Potter and Chamber of secret.” The

matchmaker system compares Bob’s

favorite movies with all templates stored

in the system. In this example, the system

306 매치메이커: 선호도를 고려한 퍼지 볼트 기법

is likely to find Alice.

 To generalize the face vault, we newly

introduce the concept of preference

buckets  ⋯, weight distribution

, chaff distribution , and code

word distribution . Each preference

bucket is filled a genuine favorite and a

huge number of counterfeits and the

number of buckets depends on the number

of user’s favorites. The weight distribution

is defined by the weight values from

users, but we assume that the weight

distribution follows a certain well-known

distribution such as linear, exponentiation,

and normal distribution (i.e., S-curve).

The chaff distribution indicates the

number of counterfeits in each bucket for

the security reason. The code word

distribution means how many points

should be generated from a single favorite

or counterfeit in a bucket. The chaff and

code word distributions depend on the

weight distribution.

 In the following section, we explain in

detail how the matchmaker works with

movie scenario as illustrated in the

ordinary fuzzy vault scheme.

4.2 How to make preference template

 Let  be the size of cord word,  be the

size of message, and  be the order of

Galois field  as parameters of RS error

correction code. Basically, ≤ ≤ . Then,

 should be equal to 




, 

should be the degree of the secret

polynomial .

 Alice suggests her favorite movies set

  ∈ to the matchmaker system,

where  is movie name,  is weight of

movie, and  is the number of favorite

movies. Note that the movies’ weight

follows the weight distribution  (i.e.,

 ).

 The system randomly generates a secret

  ⋯ , computes  , and

interprets as secret polynomial

 
 




 . Alice’s personal information

 is encrypted by using  such that

. Each favorite movie  is

classified into each preference bucket 

(i.e., ∈). When two or more movies

have the same weight, they should be

classified into the same bucket. Thus the

number of buckets ′ is less than or equal

to .

 Let  be a set of counterfeits for bucket

. According to the chaff distribution

, the system adds counterfeits into

each bucket. Then,  ∪,

  , and ∩ ∅ if ≠. After

that, the system shuffles all bucket for

hiding the favorite movies and computes

x-coordinates for all movies (including

favorite and counterfeit movies)　 in each

bucket such that


   ≤ ≤ and (3)


  ≤ ≤ ∈. (4)

 For all x-coordinates in 
 and 

,

the system evaluates the secret polynomial

such that


 ∈ and (5)


 ∈∧∉∧ ,

1 (6)

where   denotes a random element

generator avoiding . Note that

  ∪≤ × because of

the hash collision and all points in

정보보호학회논문지 (2016. 4) 307

Fig. 2. Procedure for making a movie preference template






 have different x-coordinates and

the number of points in  cannot exceed

.

 Finally, the system store

〈   ′ 〉 (7)

as Alice’s preference template. This

procedure is illustrated in Fig.2.

 Note that we cannot directly apply

Nguyen et al’s technique[11] to generate

chaff points because they are generated

from the counterfeit movies. The proposed

system makes the finding collision (i.e.,

polynomial) difficult by using the

cryptographic hash function for checksum

instead of using cyclic redundancy check

(CRC) as many fuzzy vault-based

biometrics systems do.

4.3 How to find people

 To find people who have similar

preference, Bob inputs his favorite movies

 ′∈ to the matchmaker system.

Given a preference template

〈  ′ 〉, the system

searches each movie ′ in all buckets

⋯′ and finds out the corresponding

weight ′ . If the system cannot find ′
in any bucket, it removes ′ from 

(i.e., ′). For each ′ with

′ , the matchmaker computes

x-coordinates such that

′′≤≤′  ′∈
∅  ′∉ (8)

 And then, for each x-coordinate in

 ′ ′∪⋯∪′′ , the system collects a

corresponding point in  (i.e., the points

in  whose x-coordinates are identical to

the x-coordinates in  ′).
 If the number of collected points is

greater than  and less than ,

the system tries to reconstruct secret

308 매치메이커: 선호도를 고려한 퍼지 볼트 기법

Fig. 3. Procedure for searching people who have similar movie preference

polynomial  by using Berlekamp-

Welch algorithm. If the Berlekamp-Welch

algorithm returns  ′ , it extracts the

coefficients ′  ′ ′⋯′  and

computes  ′ ′ . If    ′ , the system

notifies user’s information of current

preference template to Bob after

decrypting  such that ′. And

then, the system continues the searching

procedure to the next user’s preference

template. This procedure is shown in

Fig.3.

4.4 Security Parameters

 In the fuzzy vault scheme[1], an

attacker who wants to reveal the locked

secret (as a corresponding polynomial) is

mainly concerned. To guarantee the

sufficient security level against that

attacker, the matchmaker system should

carefully choose the parameters and

distributions.

 If the attacker can choose  or more

genuine points from , it can reconstruct

the secret polynomial. This probability 

is equal to  and the total

number of points in  is slightly less or

equal to 


′
× . On the other

hand, the number of elements in bucket 

is equal to . Therefore,

 


≈
 

′


. (9)

 Since each element is linked to the

points in , the attacker may reconstruct

the secret polynomial by choosing  or less

elements (e.g., movies) in the buckets. If

 is linear distribution, the attacker

must choose elements (e.g., movies) from

higher weighted buckets (one element in

one bucket)　so that the number of linked

points in  is greater than  and less

than . Let  be the minimum

number of elements that the attacker

정보보호학회논문지 (2016. 4) 309

Fig. 4. User interface of movie matchmaker

should choose. Then, ≤ ′ and

 ′′ ⋯′ ≥ .
The probability of this attack () is

equal to  
′

′
 . Therefore,

≈ 
′

′




. (10)

 Obviously,    in most cases. Due to

the variety of definitions of distributions,

in this paper, we offer a few parameter

instances with its security level. Note that

 is not deeply related to security strength

except hash collision problem.

Example 1) If   ′ ,  ,

 ,   ,   , and

  , then   and  ≤ . In

addition, if we set    and   , then

   (∵ ≥  ).

In this case, the probabilities  and 

are approximately close to

≈




 and (11)

≈. (12)

 If    and   , ≈
 and

≈
.

Example 2) If   ′ ,  ,  ,
  ,   , and   

, then  ,  ≤ , and   

(∵≥  ). In this case,

≈≈
 and ≈

≈.

 As shown in the above examples, when 

is relatively small, it is difficult to achieve

higher level of security even with the huge

number of counterfeits.

V. Experiments

5.1 Experiment environment

 To confirm the overall performance of

our proposal, we implemented the movie

matchmaker as illustrated in Section 4.

For experiments, we implemented a server

program using Python 2.7.3 on Ubuntu

12.04.4 x64 Server running on Intel Xeon

E5-2620@2.00GHz CPU with 64GB RAM

and a user interface program using

HTML5 (with JavaScript) as shown in

Fig.4. We collected 266,263 movies (i.e.,

title, director, release date, etc.) from

Freebase database powered by Google and

stored them using MongoDB 2.4.14. We

applied two type of hash functions: Python

built-in hash function for mapping movies

to x-coordinates and SHA-1 for computing

the hash value of secret polynomial.

 We performed experiments of two

parameter examples as described in

Section 4.4. In each parameter, we

measured times for making a template and

searching people. Specifically, in searching

people, we stored only one template in

database and measured the various cases

310 매치메이커: 선호도를 고려한 퍼지 볼트 기법

Example 1 Example 2

 6,510 65,005

 ≤ 44,055 ≤ 104,729( )

Table 2. Number of elements in  and 

Fig. 5. Response times for making a template

that made different code word size*. Table

2 shows the number of elements in  and

. Each experiment was repeated in 100

times.

5.2 Experiment results

 Fig.5 shows the response time for

making a template. 4.841s and 9.735s

respectively took in example 1 and 2 on

median. The number of hash operations to

map movies to x-coordinates is equal to

44,055 in example 1 and 870,060 in

example 2. On the other hand, the number

of polynomial evaluations is exactly same

with the size of ; 44,055 in example 1

and 104,729 in example 2. The gaps

between example 1 and 2 are about 20

times in hash operations and about 2

times in polynomial evaluations.

Therefore, we can conclude that most

* According to the weights of inputted movies, the

size of code word varies. For example, a user may

input several movies classified in one bucket.

significant time consuming occurs when

the system evaluates the secret polynomial

for computing points in .

 Fig.6 shows the average response times

for finding people who have similar movie

preference. In our experiments, the

response times are lied between 360ms

and 625ms in example 1 and between

904ms and 1,742ms in example 2. As the

size of code word (generated according to

user’s inputs) increases, the overall time

also increases. When the size of code word

meets the condition, which is described in

Section 4.3, the system runs

Berlekamp-Welch algorithm. Note that

there is no big difference of response times

between when Berlekamp-Welch algorithm

returns fail and secret polynomial’s

coefficients. When Berlekamp-Welch

algorithm runs, the response times slightly

increase (about 50~100ms) even though

its time complexity is . Moreover,

the number of hash operations for

mapping movies to x-coordinates is the

same to the size of code word; the time

consumption for hashing is not that much.

Therefore, the most significant time

consuming occurs due to searching movies

in buckets.

 In the experiments, the server program

utilizes ‘in’ operation of Python to search

movies in buckets. This operation is

known to have  time complexity.

However, if we use the tree mechanism,

we can reduce the searching time to

 time. In addition, the matchmaker

system includes a lots of parts that the

parallel processing can be applied to. For

example, the hash operations for mapping

movies to x-coordinates and the

polynomial evaluation can be

independently proceeded.

정보보호학회논문지 (2016. 4) 311

(a) Example 1 (b) Example 2

Fig. 6. Average response times for finding people who have similar movie preference. Blue areas

mean the matchmaker additionally runs Berlekamp-Welch algorithm.

VI. Other issues

6.1 Polynomial reconstruction by adversary

 RS error correction provides the way to

reconstruct the secret polynomial even

with some errors. The capability of error

correction is proportioned to the gap

between the size of code word and original

message such that   .

However,  is almost half of . In

other words, to correct  errors,

additional  genuine points are required.

Therefore, as described in Section 4.4, the

attacker who chooses only  points takes

more advantage than who chooses more 

points unless the probability of which it

chooses genuine points exceeds 0.5.

6.2 Preference similarity

 In this paper, we simply assume that

the preference similarity is close to  as

the fuzzy vault does. However, defining of

similarity is more complicated than our

intuition. In many areas such as

biometrics, the similarity is checked by

using geometric distances, but people’s

preferences are difficult to be represented

as vectors due to various reasons such as

ignorance and disliking. People may not

even know most movies’ names or may

dislike (or hate) some movies. Even

though the favorite movies of Alice and

Bob are exactly same, but the most

favorite movies may be different. We think

the weighted matching method is much

better than simple matching method, but

the former still does not even consider the

above situation.

 We remain this issue as our further

works. To do this, we should deeply

consider what preference is and develop

(or research) suitable methods of

comparing preferences. After that, we will

try to implement advanced matchmaker

system dealing with dynamic user

preferences in terms of the number of

favorites and their weights.

6.3 Personal entropy system

 In the fuzzy vault scheme, the personal

entropy system is mentioned as one of

useful applications. The personal entropy

system provides system users to recover

their secrets[18]. In the personal entropy

system, a secret is divided into several

partial secrets (by using the secret

sharing scheme) and a trusted third party

312 매치메이커: 선호도를 고려한 퍼지 볼트 기법

stores the partial secrets with personal

questions such as “When is your mother’s

birthday?” If a user can answer sufficient

questions, she or he can recover their

secret.

 The matchmaker can be easily converted

to the personal entropy system. Instead of

answering personal questions, users are

required to input their preferences. As

time goes on, users’ preferences may

change, but highly weighted items perhaps

remain in their preferences.

 However, to convert the matchmaker to

the personal entropy system, , the degree

of secret polynomial, and , the size of

code word, should be reduced to the

reasonable level. In example 1 described in

Section 4.4, for instance, the system must

attempt up to ×≈ cases

(i.e., secret recovering in secret sharing

scheme) in order to reconstruct the

polynomial if RS decoding fails. Instead of

reducing  and , much more counterfeits

are required. It will cause the increase of

time consumption for making templates.

Fortunately, the procedure for making

template is required only one time for

each user, and thus, it is not a big

problem to consider.

6.4 Setting for ordinary fuzzy vault

 As we mentioned in Section 4, the

matchmaker generalizes the fuzzy vault.

We can implement the ordinary fuzzy

vault based on the matchmaker by

adjusting distributions as   ,

  , and    where  denotes the

number of chaffs in a bucket. In the

template, there is only one bucket and all

chaffs and preferences are located in that

bucket. If  is large enough, mapping from

an element in  to a point in  is almost

bijective (one-to-one correspondent).

VII. Conclusion

In this paper, we eliminate the geometric

distance measurement in the fuzzy face

vault scheme and generalize the fuzzy

vault scheme for various applications. As

one of applications, we introduce the

matchmaker. By adopting the bucket

concept and three different distributions

(i.e., weight, chaff, and code word

distributions), we let the matchmaker be

able to cover not only movies but also

various preferences. Though the

experiments, we confirm the overall

performance of the matchmaker under two

different parameter settings. To use the

matchmaker in the real world, various

speed-up techniques are essential.

 For our future works, we will develop

advanced matchmaker with better

performance to deal with dynamic user

preferences. In addition, we want to

implement the personal entropy system

based on the advanced matchmaker. By

performing user experiments on that

system, we will try to confirm the

appropriateness of our approach.

References

[1] A. Juels and M. Sudan, “A fuzzy vault

scheme,” Proceedings of IEEE

International Symposium on Information

Theory (ISIT), p. 408, Jun 2002.

[2] K. Nandakumar, A.K. Jain, and S.

Pankanti, “Fingerprint-Based Fuzzy

Vault: Implementation and

Performance,” IEEE Transactions on

Information Forensics and Security, vol.

2, no. 4, pp. 744-757, Dec. 2007.

[3] A.-Y. Kim and S.-H. Lee, “Authentication

Protocol using Fuzzy Eigenface Vault

based on MoC,” Proceedings of

International Conference on Advanced

정보보호학회논문지 (2016. 4) 313

Communication Technology, vol. 3, pp.

1771-1775, Feb. 2007.

[4] G.X. Qiao and H.A. Qun, “The Automatic

Fuzzy Fingerprint Vault Based on

Geometric Hashing: Vulnerability

Analysis and Security Enhancement,”

Proceedings of 2009 International

Conference on Multimedia Information

Networking and Security (MINES), vol.

1, pp. 18-20, Nov. 2009.

[5] D. Moon, S. Lee, Y. Chung, S.B. Pan, and

K. Moon, “Implementation of automatic

fuzzy fingerprint vault,” Proceedings of

International Conference on Machine

Learning and Cybernetics, vol. 7, pp.

3781-3786, Jul. 2008.

[6] S. Lee, and D. Moon, H. Choi, and Y.

Chung, “Memory-Efficient Fuzzy

Fingerprint Vault based on the Geometric

Hashing,” Proceedings of International

Conference on Information Security and

Assurance (ISA), pp. 312-315, Apr. 2008.

[7] D. Moon, W. Choi, K. Moon, and Y. Chung,

“Fuzzy fingerprint vault using multiple

polynomials,” Proceedings of IEEE

International Symposium on Consumer

Electronics (ISCE), pp. 290-293, May

2009.

[8] L. Wu, and S. Yuan, “A Face Based Fuzzy

Vault Scheme for Secure Online

Authentication,” Proceedings of

International Symposium on Data,

Privacy and E-Commerce (ISDPE), pp.

45-49, Sep. 2010.

[9] V. Joshi and P. Sanghavi, “Three tier data

storage security in cloud using Face fuzzy

vault,” Proceedings of International

Conference on Computing,

Communication and Applications

(ICCCA), pp. 1-6, Feb. 2012

[10] D. Moon, Y. Chung, C. Seo, and S.Y. Kim,

“A practical implementation of fuzzy fin-

gerprint vault for smart cards,” Journal

of intelligent Manufacturing, vol. 25, pp.

293-302, Apr. 2014.

[11] M.T. Nguyen, Q.H. Truong, and T.K.

Dang, “Enhance fuzzy vault security us-

ing nonrandom chaff point generator,”

Information Processing Letters, vol. 116,

no. 1, pp. 53-64, Jan. 2016.

[12] D. Nyang and K. Lee, “Fuzzy Face Vault:

How to Implement Fuzzy Vault with

Weighted Features,” Proc. of

International Conference on

Human-Computer Interaction, HCII

2007, LNCS 4554, pp. 491-496, 2007.

[13] I.S. Reed and G. Solomon, “Polynomial

Codes over Certain Finite Fields,”

Journal of the Society for Industrial and

Applied Mathematics (SIAM), vol. 8, no.

2, pp. 300–304, 1960

[14] J.L. Massey, “Shift-register synthesis

and BCH decoding,” IEEE Transactions

on Information Theory, vol. IT-15, no. 1,

pp. 122–127, 1969.

[15] L.R. Welch and E.R. Berlekamp, “Error

Correction for Algebraic Block Codes,” US

4,633,470, Dec. 30, 1986.

[16] Y. Sugiyama, M. Kasahara, S. Hirasawa,

and T. Namekawa, “A method for solving

key equation for decoding Goppa codes,”

Information and Control, Vol.27, pp. 87–

99, 1975.

[17] S. Gao, “A new algorithm for decoding

Reed-Solomon codes,” Proceedings of

Communications, Information and

Network Security, pp. 55-68, Dec. 2002.

[18] C. Ellison, “Emergency Key Recovery

without Third Parties,” talk given at the

Crypto ’96 rump session, Aug. 1996.

314 매치메이커: 선호도를 고려한 퍼지 볼트 기법

<저자소개>

툽 신 후 (Tuvshinkhuu Purevsuren) 학생회원

2012년 6월: 푸네대학교 정보공학과 학사

2012년 7월~2013년 6월: Aravt Technology

2016년 2월: 인하대학교 컴퓨터정보공학과 석사

2016년 3월~현재: 브이에스코리아

<관심분야> 개인정보보호, 컴퓨터비전

강 전 일 (Jeonil Kang) 정회원

2003년 2월: 인하대학교 전기전자컴퓨터공학과 학사

2006년 2월: 인하대학교 정보통신대학원 석사

2014년 8월: 인하대학교 정보통신공학과 박사

2014년 9월~현재: 인하대학교 인간중심컴퓨팅연구소 박사후연구원

<관심분야> RFID 보안, 생체 인식 보안, 무선 센서 네트워크 보안, 무선 인터넷 보안,

웹 인증 보안

양 대 헌 (DaeHun Nyang) 종신회원

1994년 2월: 한국과학기술원 과학기술대학 전기 및 전자공학과 학사

1996년 2월: 연세대학교 컴퓨터과학과 석사

2000년 8월: 연세대학교 컴퓨터과학과 박사

2000년 9월～2003년 2월: 한국전자통신연구원 정보보호연구본부 선임연구원

2003년 2월～현재: 인하대학교 컴퓨터정보공학과 교수

<관심분야> 암호이론, 암호 프로토콜, 인증 프로토콜, 무선 인터넷 보안

이 경 희 (KyungHee Lee) 정회원

1993년 2월: 연세대학교 컴퓨터과학과 학사

1998년 8월: 연세대학교 컴퓨터과학과 석사

2004년 2월: 연세대학교 컴퓨터과학과 박사

1993년 1월~1996년 5월: LG소프트(주) 연구원

2000년 12월~2005년 2월: 한국전자통신연구원 선임연구원

2005년 3월~현재: 수원대학교 전기공학과 부교수

<관심분야> 바이오인식, 정보보호, 컴퓨터비전, 인공지능, 패턴인식

