• 제목/요약/키워드: Fuzzy Engine

검색결과 199건 처리시간 0.026초

선박용 디젤기관의 지능적인 속도제어시스템 (An intelligent Speed Control System for Marine Diesel Engine)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.320-327
    • /
    • 1998
  • The purpose of this study is to design the intelligent speed control system for marine diesel engine by combining the Model Matching Method and the Nominal Model Tracking Method. Recently for the speed control of a diesel engine some methods using the advanced control techniques such as LQ control Fuzzy control or H$\infty$ control etc. have been reported. However most of speed controllers of a marine diesel engine developed are still using the PID control algorithm But the performance of a marine diesel engine depends highly on the parameter setting of the PID controllers. The authors proposed already a new method to tune efficiently the PID parameters by the Model Mathcing Method typically taking a marine diesel engine as a non-oscillatory second-order system. It was confirmed that the previously proposed method is superior to Ziegler & Nichols's method through simulations under the assumption that the parameters of a diesel engine are exactly known. But actually it is very difficult to find out the exact model of the diesel engine. Therefore when the model and the actual diesel engine are unmatched as an alternative to enhance the speed control characteristics this paper proposes a Model Refernce Adaptive Speed Control system of a diesel engine in which PID control system for the model of a diesel engine is adopted as the nominal model and a Fuzzy controller is adopted as the adaptive controller, And in the nominal model parameters of a diesel engine are adjusted using the Model Matching Method. it is confirmed that the proposed method gives better performance than the case of using only Model Matching Method through the analysis of the characteristics of indicial responses.

  • PDF

퍼지 제어기법에 따른 선박용 유압조속기의 제어특성 및 성능개선에 관한 연구 (A Study on the Improvement of Control Characteristic and Performance of the Marine Mechanical-Hydraulic Governor using Fuzzy Control Scheme)

  • 강창남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.137-143
    • /
    • 1996
  • The propulsion marine diesel engine has been widely applied with a mechanical-hydraulic governor to control the ship speed for long time. But it was recently very difficult for the mechanical-hydraullic governor to control the speed of engine under the condition of low speed and low load because of jiggling and hunting by rough fluctuation of rotating torque. To solve these problems of control systems, the performance improvement of mechanical-hydraulic governor is required. In this paper, in order to analyze the speed stability of control systems, the influence of parameters of the engine dead time, gain, damping ratio was discussed on the view of control engineering. The performance improvement of a conventional mechanical hydraulic governor is confirmed to be possible by fuzzy control scheme.

  • PDF

연료분사식 자동차엔진의 퍼지가변구조 제어시스템 (Fuzzy Variable Structure Control System for Fuel Injected Automotive Engines)

  • 남세규;유완석
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1813-1822
    • /
    • 1993
  • An algorithm of fuzzy variable structrue control is proposed to design a closed loop fuel-injection system for the emission control of automotive gasoline engines. Fuzzy control is combined with sliding control at the switching boundary layer to improve the chattering of the stoichiometric air to fuel ratio. Multi-staged fuzzy rules are introduced to improve the adaptiveness of control system for the various operating conditions of engines, and a simplified technique of fuzzy inference is also adopted to improve the computational efficiency based on nonfuzzy micro-processors. The proposed method provides an effective way of engine controller design due to its hybrid structure satisfying the requirements of robustness and stability. The great potential of the fuzzy variable structure control is shown through a hardware-testing with an Intel 80C186 processor for controller and a typical engine-only model on an AD-100 computer.

터보제트엔진의 퍼지제어기 설계 및 다목적함수 만족기법을 통한 제어성능 향상에 관한 연구 (A Study on the Design of Fuzzy Controller for a Turbojet Engine Model and its Performance Enhancement through Satisfactory Multiple Objectives)

  • 한동주
    • 한국항공우주학회지
    • /
    • 제31권6호
    • /
    • pp.61-71
    • /
    • 2003
  • 터보제트엔진 모델에 대한 제어에 있어서, 비교적 잘 설계된 PI 제어기 성능결과를 바탕으로 Takagi-Sugeno형 뉴로-퍼지 추론계를 통한 플랜트 모델의 제어 시스템을 규명함으로서, PI형 T-S 퍼지규칙들을 퍼지제어기를 설계하였다. 이렇게 설계된 제어기의 성능을 향상시키기 위하여, 각 퍼지규칙들을 퍼지 C-Means Algorithm으로부터 각각의 목적 함수군으로 분류한 후, 각 분류군에 대해 규칙간의 가중치가 각 목적함수의 만족도에 부합되도록 하는 기법을 제시하였고, 이를 잘 설계된 T-S형 퍼지제어기에 적용하여 성능을 향상시킴으로써 그 유용성을 보였다.

퍼지 Look-up Table을 이용한 엔진 다이나모메타 시스템의 트로틀 벨브 제어 (The Throttle Valve Control of engine Dynamometer system Using Fuzzy Look-up Table)

  • 이상윤;이팔진;신위재;김치원
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.125-130
    • /
    • 1995
  • Recently, the vehicle engine requried precision control of Air-Fuel rate and rigid restriction of exhaust gas. Therefore, we demanded excellent measuring equipment so as to improve of engine performance. Specially, throttle valve control is very important part in the engine control, because structure of engine dynamometer system is very important part in the engine control, because structure of engine dynamometer system is very complicate and it has nonlinear elements which is influenced of disturbance about vibration, a heat, a cooling, energy loss so on. In this study, we propose the method that the control technique using Fuzzy Look-up table and we obtained the satisfying result from realized the control system.

  • PDF

퍼지추론 기법에 의한 터보제트 엔진제어 (Turbojet Engine Control using Fuzzy Inference Method)

  • 지민석;이영찬;이강웅;기자영;공창덕
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅲ
    • /
    • pp.1271-1274
    • /
    • 2003
  • In this paper we propose a turbojet engine controller based on fuzzy inference method. Fuel flow control input is designed by fuzzy inference in order to avoid surge and flame-out during acceleration and deceleration. Acceleration and deceleration demands are used as control commands, which can achieve effective performance without surge and flame-out.

  • PDF

제트엔진의 예견 퍼지슬라이딩 제어 (Application of predictive fuzzy sliding control for the fuel system of trubojet engines)

  • 남세규;한동주;김병교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1068-1071
    • /
    • 1993
  • An algorithm of fuzzy predictive sliding control is proposed to design a jet engine control system. Sliding control using predictive scheme is adopted to compensate the time delay of fuel injector. Fuzzy rule-base is also introduced to adjust the command input for suppressing the surge. The potential of the proposed algorithm is shown through simulations utilizing a typical engine-only model.

  • PDF

유전 알고리즘에 의한 Hybrid 퍼지 추론기의 구성 (Application of genetic algorithm to hybrid fuzzy inference engine)

  • 박세희;조현찬;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.863-868
    • /
    • 1992
  • This paper presents a method on applying Genetic Algorithm(GA), which is a well-known high performance optimizing algorithm, to construct the self-organizing fuzzy logic controller. Fuzzy logic controller considered in this paper utilizes Sugeno's hybrid inference method, which has an advantage of simple defuzzification process in the inference engine. Genetic algorithm is used to find the optimal parameters in the FLC. The proposed approach will be demonstrated using 2 d.o.f robot manipulator to verify its effectiveness.

  • PDF

Application of Genetic Algorithm to Hybrid Fuzzy Inference Engine

  • Park, Sae-hie;Chung, Sun-tae;Jeon, Hong-tae
    • 한국지능시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.58-67
    • /
    • 1992
  • This paper presents a method on applying Genetric Algorithms(GA), which is a well-know high performance optimizing algorithm, to construct the self-organizing fuzzy logic controller. Fuzzy logic controller considered in this paper utilized Sugeno's hybrid inference method. which has an advantage of simple defuzzification process in the inference engine. Genetic algorithm is used to find the iptimal parameters in the FLC. The proposed approach will be demonstrated using 2 d. o. f robot manipulator to verify its effectiveness.

  • PDF

승용 디젤엔진에서 EGR과 VGT의 공동 제어 (Coordinated Control of EGR and VGT in the Diesel Engine)

  • 허준영;정진은;진영욱;강우;정재우
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.159-164
    • /
    • 2008
  • In diesel engine technology the drive to reduce emissions and fuel consumption with improved performance targets has led to many advances. In particular, Exhaust Gas Recirculation (EGR) and Variable Geometry Turbocharger (VGT) have played a key role in achieving these aims by permitting flexible control of the engine inlet gas charge. The full potential of these devices are difficult to achieve due to limitations in the classical control methods. However, fuzzy logic is particularly appealing due to its simple heuristic nature. The controller used in this work was designed using the Matlab Fuzzy Logic Toolbox. The overall object is to access the potential for emissions and fuel consumption reductions during transient events whilst maintaining and even improving driveability. Classical control methods (PID), as used on production engines, are examined and contrasted with an coordinated control that utilizes fuzzy logic.