• 제목/요약/키워드: Fuzzy Classification

검색결과 572건 처리시간 0.025초

침입 탐지를 위한 효율적인 퍼지 분류 규칙 생성 (Generation of Efficient Fuzzy Classification Rules for Intrusion Detection)

  • 김성은;길아라;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권6호
    • /
    • pp.519-529
    • /
    • 2007
  • 본 논문에서는 효율적인 침입 탐지를 위해 퍼지 규칙을 이용하는 방법을 제안한다. 제안한 방법은 퍼지 의사결정 트리의 생성을 통해 침입 탐지를 위한 퍼지 규칙을 생성하고 진화 알고리즘을 사용하여 최적화한다. 진화 알고리즘의 효율적인 수행을 위해 지도 군집화를 사용하여 퍼지 규칙을 위한 초기 소속함수를 생성한다. 제안한 방법의 진화 알고리즘은 적합도 평가시 퍼지 규칙(퍼지 의사결정 트리)의 성능과 복잡성을 고려하여 평가한다. 또한 데이타 분할을 이용한 평가와 퍼지 의사결정 트리의 생성과 평가 시간을 줄이는 방법으로 소속정도 캐싱과 zero-pruning을 사용한다. 제안한 방법의 성능 평가를 위해 KDD'99 Cup의 침입 탐지 데이타로 실험하여 기존 방법보다 성능이 향상된 것을 확인하였다. 특히, KDD'99 Cup 우승자에 비해 정확도가 1.54% 향상되고 탐지 비용은 20.8% 절감되었다.

An Improved EEG Signal Classification Using Neural Network with the Consequence of ICA and STFT

  • Sivasankari, K.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1060-1071
    • /
    • 2014
  • Signals of the Electroencephalogram (EEG) can reflect the electrical background activity of the brain generated by the cerebral cortex nerve cells. This has been the mostly utilized signal, which helps in effective analysis of brain functions by supervised learning methods. In this paper, an approach for improving the accuracy of EEG signal classification is presented to detect epileptic seizures. Moreover, Independent Component Analysis (ICA) is incorporated as a preprocessing step and Short Time Fourier Transform (STFT) is used for denoising the signal adequately. Feature extraction of EEG signals is accomplished on the basis of three parameters namely, Standard Deviation, Correlation Dimension and Lyapunov Exponents. The Artificial Neural Network (ANN) is trained by incorporating Levenberg-Marquardt(LM) training algorithm into the backpropagation algorithm that results in high classification accuracy. Experimental results reveal that the methodology will improve the clinical service of the EEG recording and also provide better decision making in epileptic seizure detection than the existing techniques. The proposed EEG signal classification using feed forward Backpropagation Neural Network performs better than to the EEG signal classification using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier in terms of accuracy, sensitivity, and specificity.

Trace 변환과 펴지 기법을 이용한 곤충 발자국 인식 (Insect Footprint Recognition using Trace Transform and a Fuzzy Method)

  • 신복숙;차의영;우영운
    • 한국멀티미디어학회논문지
    • /
    • 제11권11호
    • /
    • pp.1615-1623
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 찾아 개체를 인식하기 위해서, 개선된 SOM 알고리즘과 ART2 알고리즘을 사용하여 인식의 기본 영역을 추출한다. 또한 Trace 변환을 이용하여 발자국의 인식에 필요한 특징을 추출하고 개체를 판단하는 기법을 제안한다. 제안한 기법에서는 모폴로지 기법을 이용하여 region을 먼저 찾고, 개선된 SOM과 ART2 알고리즘을 이용하여 곤충의 크기와 종류에 관계없이 세그먼트를 추출한다. 그리고 곤충 발자국과 같이 다양한 변형이 존재하는 패턴에 적합한 특징값을 찾기 위해서 Trace 변환을 이용하고, 함수의 조합으로 재구성된 Triple 특징값을 이용하여 곤충별로 고유한 패턴을 찾아 인식 실험을 수행한다. 곤충 발자국에서 명확한 발자국과 그렇지 못한 발자국을 자동으로 결정하는 것이 매우 어렵다. 따라서 이와 같이 불확실한 대상을 제외시키지 않고 가능성의 대상으로 판단하고 분류하기 위해서 퍼지 가중치 평균을 이용하여 인식을 수행한다. 제안한 방법에 의한 곤충 발자국의 영역 추출과 인식 실험을 실시하고 그 결과를 제시하였다.

  • PDF

퍼지 소속도 함수와 가중치 평균을 이용한 지도 학습 기반 분류기 설계 (Design of a Classifier Based on Supervised Learning Using Fuzzy Membership Function and Weighted Average)

  • 우영운
    • 한국정보통신학회논문지
    • /
    • 제25권4호
    • /
    • pp.508-514
    • /
    • 2021
  • 본 논문에서는 지도 학습 기반의 분류기 제안을 위해, 분류 데이터의 각 특징별 소속도를 결정하는 3가지 종류의 퍼지 소속도 함수를 제안하였다. 또한 각 특징별 소속도들의 평균값을 이용하여 분류 결과를 도출하는 과정에 사용되는 평균값 산출 기법을 단순 산술평균이 아닌 다양한 가중치를 활용한 가중치 평균을 이용함으로써 분류기 성능을 향상시킬 수 있는 가능성을 제시하였다. 제안한 기법들의 실험을 위해 Iris, Ecoli, Yeast의 3가지 표준 데이터 세트를 사용하였다. 실험 결과, 서로 다른 특성의 데이터 세트들에 대해서도 고르게 우수한 분류 성능이 얻어질 수 있음을 확인하였고, 기존에 발표된 다른 기법들에 의한 해당 데이터 세트들의 분류 성능과 비교했을 때, 퍼지 소속도 함수의 개선과 가중치 평균 기법의 개선을 통해 더욱 우수한 분류 성능이 가능함을 확인할 수 있었다.

퍼지 신경망을 이용한 퍼지 추론 시스템의 학습 및 추론 (Learning and inference of fuzzy inference system with fuzzy neural network)

  • 장대식;최형일
    • 전자공학회논문지B
    • /
    • 제33B권2호
    • /
    • pp.118-130
    • /
    • 1996
  • Fuzzy inference is very useful in expressing ambiguous problems quantitatively and solving them. But like the most of the knowledge based inference systems. It has many difficulties in constructing rules and no learning capability is available. In this paper, we proposed a fuzzy inference system based on fuzy associative memory to solve such problems. The inference system proposed in this paper is mainly composed of learning phase and inference phase. In the learning phase, the system initializes it's basic structure by determining fuzzy membership functions, and constructs fuzzy rules in the form of weights using learning function of fuzzy associative memory. In the inference phase, the system conducts actual inference using the constructed fuzzy rules. We applied the fuzzy inference system proposed in this paper to a pattern classification problem and show the results in the experiment.

  • PDF

자동 구축 퍼지 규칙기반 패턴 인식 시스템에 의한 고장진단 시스템의 구현 (Automatically Constructed Fuzzy Rule-Based Pattern Classification Systems for Fault Diagnosis)

  • 홍윤광;조성원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.956-958
    • /
    • 1995
  • This paper presents the automatic construction of fuzzy rule-based systems for diagnosing the faults of complex systems. Generally, fuzzy systems work well when we can use expert's experience to articulate fuzzy IF-THEN rules and memberships for fuzzy sets. When we cannot do this, we should generate the fuzzy rules and membership functions for fuzzy sets directly from experimental data. In this paper, we propose a new method on how to extract fuzzy sets and fuzzy rules. We also introduce an efficient fine-tunning algorithm of the parameters of membership functions.

  • PDF

Refined Fuzzy ART 알고리즘을 이용한 한방 자가 질병 분류 시스템 (Self-Diagnosing Disease Classification System for Oriental Medical Science with Refined Fuzzy ART Algorithm)

  • 김광백
    • 한국콘텐츠학회논문지
    • /
    • 제9권7호
    • /
    • pp.1-8
    • /
    • 2009
  • 본 논문에서는 질병에 대한 전문적인 지식이 부족한 일반인들을 대상으로 자신의 건강 상태를 쉽게 파악할 수 있는 퍼지 신경망 기법을 이용한 한방 자가 진단 질병 분류 시스템과, 자택에서 간편하게 전문의의 진료상담을 받을 수 있는 원격 진료 시스템을 통합한 홈메디컬 시스템을 제안한다. 제안한 한방 자가 진단 시스템은 72가지 한방 질병과 각 질병에 대한 증상을 분석하여 데이터베이스로 구축하고 구축된 데이터베이스 정보를 기반으로 퍼지 신경망 기법을 적용하여 사용자의 질병을 도출한다. 본 논문의 자가 진단 방법은 사용자가 자신의 대표 증상을 제시하면 해당 증상을 포함하는 질병들을 도출하고, 도출된 질병들의 세부 증상들을 사용자가 입력 벡터로 제시하면 퍼지 신경망 기법을 적용하여 세부 증상에 대한 질병들을 클러스터링한 후, 세부 증상에 대한 질병의 소속 정도를 제공한다. 제안한 원격 진료 시스템은 사용자와 전문의가 모두 로그인을 통하여 접속하게 되면 서버에 클라이언트의 정보가 송신되고, 사용자는 서버에서 전문의의 접속 현황을 전달받아 원하는 전문의와 동화상으로 원격 연결되어 전문의의 진료 소견을 받는다. 본 논문에서 제안한 시스템을 한의학 전문의가 분석한 결과, 본 논문에서 제안한 시스템이 한방 질병의 보조 진단으로서의 가능성을 확인하였다.

다변량 퍼지 의사결정트리와 사용자 적응을 이용한 손동작 인식 (Hand Gesture Recognition using Multivariate Fuzzy Decision Tree and User Adaptation)

  • 전문진;도준형;이상완;박광현;변증남
    • 로봇학회논문지
    • /
    • 제3권2호
    • /
    • pp.81-90
    • /
    • 2008
  • While increasing demand of the service for the disabled and the elderly people, assistive technologies have been developed rapidly. The natural signal of human such as voice or gesture has been applied to the system for assisting the disabled and the elderly people. As an example of such kind of human robot interface, the Soft Remote Control System has been developed by HWRS-ERC in $KAIST^[1]$. This system is a vision-based hand gesture recognition system for controlling home appliances such as television, lamp and curtain. One of the most important technologies of the system is the hand gesture recognition algorithm. The frequently occurred problems which lower the recognition rate of hand gesture are inter-person variation and intra-person variation. Intra-person variation can be handled by inducing fuzzy concept. In this paper, we propose multivariate fuzzy decision tree(MFDT) learning and classification algorithm for hand motion recognition. To recognize hand gesture of a new user, the most proper recognition model among several well trained models is selected using model selection algorithm and incrementally adapted to the user's hand gesture. For the general performance of MFDT as a classifier, we show classification rate using the benchmark data of the UCI repository. For the performance of hand gesture recognition, we tested using hand gesture data which is collected from 10 people for 15 days. The experimental results show that the classification and user adaptation performance of proposed algorithm is better than general fuzzy decision tree.

  • PDF

High-speed Fuzzy Inference System in Integrated GUI Environment

  • Lee, Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권1호
    • /
    • pp.50-55
    • /
    • 2004
  • We propose an intgrated Gill environment system having only integer fuzzy operations in the consequent part and the defuzzification stage. In this paper, we also propose an integrated Gill environment system with 4 parallel fuzzy processing units to be operated in parallel on the classification of the sensed image data. In this, we solve the problems of taking longer times as the fuzzy real computations of [0, 1] by using the integer pixel conversion algorithm to convert lines of each fuzzy linguistic term to the closest integer pixels. This procedure is performed automatically in the GUI application program. As a Gill environment, PCI transmission, image data pre-processing, integer pixel mapping and fuzzy membership tuning are considered. This system can be operated in parallel manner for MIMO or MISO systems.

패턴인식을 위한 타원형 Fuzzy-ART (Ellipsoid Fuzzy-ART for Pattern Recognition Improvement)

  • 강성호;정성부;임중규;이현관;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.305-308
    • /
    • 2003
  • 본 논문에서는 Fuzzy-ART (Fuzzy-Adaptive Resonance Theory) 신경회로망의 패턴인식 성능을 개선하기 위해 Mahalanobis 거리를 이용한 타원형 fuzzy-ART 신경회로망을 제안한다. 제안한 방식은 벡터공간상에서 패턴의 영역을 규정하기 위해 Mahalanobois 거리 개념을 이용한다. 제안한 방식의 유용성을 확인하기 위해 얼굴인식에 적용하였으며, 기존의 방식과 비교 검토한 결과 유용성을 확인하였다.

  • PDF