• 제목/요약/키워드: Fuzzy C-means

검색결과 449건 처리시간 0.024초

Blind Channel Equalization Using Conditional Fuzzy C-Means

  • Han, Soo-Whan
    • 한국멀티미디어학회논문지
    • /
    • 제14권8호
    • /
    • pp.965-980
    • /
    • 2011
  • In this paper, the use of conditional Fuzzy C-Means (CFCM) aimed at estimation of desired states of an unknown digital communication channel is investigated for blind channel equalization. In the proposed CFCM, a collection of clustered centers is treated as a set of pre-defined desired channel states, and used to extract channel output states. By considering the combinations of the extracted channel output states, all possible sets of desired channel states are constructed. The set of desired states characterized by the maximal value of the Bayesian fitness function is subsequently selected for the next fuzzy clustering epoch. This modification of CFCM makes it possible to search for the optimal desired channel states of an unknown channel. Finally, given the desired channel states, the Bayesian equalizer is implemented to reconstruct transmitted symbols. In a series of simulations, binary signals are generated at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The experimental studies demonstrate that the performance (being expressed in terms of accuracy and speed) of the proposed CFCM is superior to the performance of the existing method exploiting the "conventional" Fuzzy C-Means (FCM).

Prediction of Flashover and Pollution Severity of High Voltage Transmission Line Insulators Using Wavelet Transform and Fuzzy C-Means Approach

  • Narayanan, V. Jayaprakash;Sivakumar, M.;Karpagavani, K.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1677-1685
    • /
    • 2014
  • Major problem in the high voltage power transmission line is the flashover due to polluted ceramic insulators which leads to failure of equipments, catastrophic fires and power outages. This paper deals with the development of a better diagnostic tool to predict the flashover and pollution severity of power transmission line insulators based on the wavelet transform and fuzzy c-means clustering approach. In this work, laboratory experiments were carried out on power transmission line porcelain insulators under AC voltages at different pollution conditions and corresponding leakage current patterns were measured. Discrete wavelet transform technique is employed to extract important features of leakage current signals. Variation of leakage current magnitude and distortion ratio at different pollution levels were analyzed. Fuzzy c-means algorithm is used to cluster the extracted features of the leakage current data. Test results clearly show that the flashover and pollution severity of power transmission line insulators can be effectively realized through fuzzy clustering technique and it will be useful to carry out preventive maintenance work.

커널 밀도 추정을 이용한 Fuzzy C-means의 초기 원형 설정 (Initial Prototype Selection in Fuzzy C-Means Using Kernel Density Estimation)

  • 조현학;허경용;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제43차 동계학술발표논문집 19권1호
    • /
    • pp.85-88
    • /
    • 2011
  • Fuzzy C-Means (FCM) 알고리듬은 가장 널리 사용되는 군집화 알고리듬 중 하나로 다양한 응용 분야에서 사용되고 있다. 하지만 FCM은 여러 가지 문제점을 가지고 있으며 초기 원형 설정이 그 중 하나이다. FCM은 국부 최적해에 수렴하므로 초기 원형 설정에 따라 클러스터링 결과가 달라진다. 이 논문에서는 이러한 FCM의 초기 원형 설정 문제를 개선하기 위하여 커널밀도 추정 (kernel density estimation) 기법을 활용하는 방법을 제안한다. 제안한 방법에서는 먼저 커널 밀도 추정을 수행한 후 밀도가 높은 지역에 클러스터의 초기 원형을 설정하고 원형이 설정된 영역의 밀도를 감소시키는 과정을 반복함으로써 효율적으로 초기 원형을 설정할 수 있다. 제안된 방법이 일반적으로 사용되는 무작위 초기화 방법에 비해 효율적이라는 사실은 실험결과를 통해 확인할 수 있다.

  • PDF

유전자적 최적 정보 입자 기반 퍼지 추론 시스템 (Genetically Optimized Information Granules-based FIS)

  • 박건준;오성권;이영일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.146-148
    • /
    • 2005
  • In this paper, we propose a genetically optimized identification of information granulation(IG)-based fuzzy model. To optimally design the IG-based fuzzy model we exploit a hybrid identification through genetic alrogithms(GAs) and Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the seleced input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the inital parameters are tuned effectively with the aid of the genetic algorithms and the least square method. And also, we exploite consecutive identification of fuzzy model in case of identification of structure and parameters. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

Type-2 FCM 기반 퍼지 추론 시스템의 설계 및 최적화 (Design of Type-2 FCM-based Fuzzy Inference Systems and Its Optimization)

  • 박건준;김용갑;오성권
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2157-2164
    • /
    • 2011
  • In this paper, we introduce a new category of fuzzy inference system based on Type-2 fuzzy c-means clustering algorithm (T2FCM-based FIS). The premise part of the rules of the proposed model is realized with the aid of the scatter partition of input space generated by Type-2 FCM clustering algorithm. The number of the partition of input space is composed of the number of clusters and the individual partitioned spaces describe the fuzzy rules. Due to these characteristics, we can alleviate the problem of the curse of dimensionality. The consequence part of the rule is represented by polynomial functions with interval sets. To determine the structure and estimate the values of the parameters of Type-2 FCM-based FIS we consider the successive tuning method with generation-based evolution by means of real-coded genetic algorithms. The proposed model is evaluated with the use of numerical experimentation.

FCM 기반 퍼지 뉴럴 네트워크의 진화론적 최적화 (Genetic Optimization of Fuzzy C-Means Clustering-Based Fuzzy Neural Networks)

  • 최정내;김현기;오성권
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.466-472
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based fuzzy neural networks (FCM-FNN) and the optimization of the network is carried out by means of hierarchal fair competition-based parallel genetic algorithm (HFCPGA). FCM-FNN is the extended architecture of Radial Basis Function Neural Network (RBFNN). FCM algorithm is used to determine centers and widths of RBFs. In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM-FNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Since the performance of FCM-FNN is affected by some parameters of FCM-FNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the HFCPGA which is a kind of multipopulation-based parallel genetic algorithms(PGA) is exploited to carry out the structural optimization of FCM-FNN. Moreover the HFCPGA is taken into consideration to avoid a premature convergence related to the optimization problems. The proposed model is demonstrated with the use of two representative numerical examples.

Automatic Extraction of Blood Flow Area in Brachial Artery for Suspicious Hypertension Patients from Color Doppler Sonography with Fuzzy C-Means Clustering

  • Kim, Kwang Baek;Song, Doo Heon;Yun, Sang-Seok
    • Journal of information and communication convergence engineering
    • /
    • 제16권4호
    • /
    • pp.258-263
    • /
    • 2018
  • Color Doppler sonography is a useful tool for examining blood flow and related indices. However, it should be done by well-trained operator, that is, operator subjectivity exists. In this paper, we propose an automatic blood flow area extraction method from brachial artery that would be an essential building block of computer aided color Doppler analyzer. Specifically, our concern is to examine hypertension suspicious (prehypertension) patients who might develop their symptoms to established hypertension in the future. The proposed method uses fuzzy C-means clustering as quantization engine with careful seeding of the number of clusters from histogram analysis. The experiment verifies that the proposed method is feasible in that the successful extraction rates are 96% (successful in 48 out of 50 test cases) and demonstrated better performance than K-means based method in specificity and sensitivity analysis but the proposed method should be further refined as the retrospective analysis pointed out.

하이브리드 분류기법을 이용한 위성영상의 분류에 관한 연구 (A Study on the Classification for Satellite Images using Hybrid Method)

  • 전영준;김진일
    • 정보처리학회논문지B
    • /
    • 제11B권2호
    • /
    • pp.159-168
    • /
    • 2004
  • 본 논문에서는 위성영상의 분류에 대한 성능 개선을 위하여 ISODATA 클러스터링, 퍼지 C-Means 알고리즘, 베이시안 최대우도 분류기법을 통합한 하이브리드 분류기법을 제안하였다. 본 연구에서는 분석자에 의하여 분류항목별 학습 데이터를 선정한 후 이를 ISODATA 클러스터링을 이용하여 각각의 분류항목별로 분광특징에 따라 학습 데이터를 세분화하여 새로운 학습 데이터를 선정하였다. 새롭게 선정된 학습 데이터를 이용하여 퍼지 C-Means 알고리즘을 이용하여 분류를 수행하고 그 결과를 베이시안 최대우도 분류기의 사전확률로 적용하여 분류를 수행하였다. 그 결과 분석자가 선정한 분류항목별 훈련데이터의 분광적인 특징에 관계없이 분류를 수행할 수 있었으며 위성영상의 분류의 성능을 개선할 수 있었다. 제안된 기법은 Landsat TM 위성영상을 이용하여 그 적용성을 시험하였다.

퍼지 C-Means 클러스터링을 이용한 요부 초음파 영상의 양자화 (The Quantization of Lumbar Ultrasonographic Images using Fuzzy C-Means Clustering)

  • 홍동진;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2013년도 제47차 동계학술대회논문집 21권1호
    • /
    • pp.301-302
    • /
    • 2013
  • 본 논문에서는 초음파 영상에서 퍼지 C-Means 클러스터링을 이용한 양자화 기법을 제안한다. 제안된 방법은 초음파 영상에서 나타난 명암도를 이용하여 n개의 그룹으로 클러스터링한다. 그리고 각 클러스터의 중심 값을 기준으로 정렬한 뒤, 각 그룹에 지정된 색상을 요부 초음파 영상에서 나타낸다. 본 논문에서 제안하는 기법을 적용한 요부 초음파 영상과 일반적으로 자주 이용되는 히스토그램 기반 양자화 기법을 적용한 요부 초음파 영상을 비교하였을 때, 본 논문에서 제안하는 퍼지 C-Means 클러스터링을 이용한 양자화를 적용한 영상이 근육 내의 지방을 분석하는데 효과적인 것을 확인할 수 있었다.

  • PDF

Possibilistic Fuzzy C-Means 클러스터링 알고리즘의 확장 (Extension of the Possibilistic Fuzzy C-Means Clustering Algorithm)

  • 허경용;우영운;김광백
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.423-426
    • /
    • 2007
  • 클러스터링은 주어진 데이터 포인트들을 주어진 개수의 그룹으로 나누는 비지도 학습의 한 방법이다. 클러스터링의 방법 중 하나로 널리 알려진 퍼지 클러스터링은 하나의 포인트가 모든 클러스터에 서로 다른 정도로 소속될 수 있도록 함으로써 각 포인트가 하나의 클러스터에만 속할 수 있도록 하는 K-means와 같은 방법에 비해 자연스러운 클러스터 형태의 유추가 가능하고, 잡음에 강한 장점이 있다. 이 논문에서는 기존의 퍼지 클러스터링 방법 중 소속도(membership)와 전형성(typicality)을 동시에 계산해 낼 수 있는 Possibilistic Fuzzy C-Means (PFCM) 방법에 Gath-Geva (GG)의 방법 을 적용하여 PFCM을 확장한다. 제안한 방법은 PFCM의 장점을 그대로 가지면서도, GG의 거리 척도에 의해 클러스터들 사이의 경계를 강조함으로써 분류 목적에 적합한 소속도를 계산할 수 있으며, 전형성은 가우스 형태의 분포에서 생성된 포인트들의 분포 함수를 정확하게 모사함으로써 확률 밀도 추정의 방법으로도 사용될 수 있다. 또한 GG 방법은 Gustafson-Kessel 방법과 달리 클러스터에 포함된 포인트의 개수가 확연히 차이 나는 경우에도 정확한 결과를 얻을 수 있다는 사실을 실험 결과를 통해 확인할 수 있었다.

  • PDF