• Title/Summary/Keyword: Fuzzy Analysis

Search Result 1,758, Processing Time 0.026 seconds

Adaptive Clustering Algorithm for Recycling Cell Formation An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. In this paper, a heuristic approach for fuzzy ART neural network is suggested. The modified Fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its aim is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

A Design of GA-based TSK Fuzzy Classifier and Its Application (GA 기반 TSK 퍼지 분류기의 설계와 응용)

  • 곽근창;김승석;유정웅;김승석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.754-759
    • /
    • 2001
  • In this paper, we propose a TSK(Takagi-Sugeno-Kang)-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy c-Means) clustering, ANFIS(Adaptive Neuro-Fuzzy Inference System) and hybrid GA(Genetic Algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive GA) and RLSE(Recursive Least Square Estimate). Finally, we applied the proposed method to Iris data classificationl problems and obtained a better performance than previous works.

  • PDF

A Study on the Adaptive Polynomial Neuro-Fuzzy Networks Architecture (적응 다항식 뉴로-퍼지 네트워크 구조에 관한 연구)

  • Oh, Sung-Kwun;Kim, Dong-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.430-438
    • /
    • 2001
  • In this study, we introduce the adaptive Polynomial Neuro-Fuzzy Networks(PNFN) architecture generated from the fusion of fuzzy inference system and PNN algorithm. The PNFN dwells on the ideas of fuzzy rule-based computing and neural networks. Fuzzy inference system is applied in the 1st layer of PNFN and PNN algorithm is employed in the 2nd layer or higher. From these the multilayer structure of the PNFN is constructed. In order words, in the Fuzzy Inference System(FIS) used in the nodes of the 1st layer of PNFN, either the simplified or regression polynomial inference method is utilized. And as the premise part of the rules, both triangular and Gaussian like membership function are studied. In the 2nd layer or higher, PNN based on GMDH and regression polynomial is generated in a dynamic way, unlike in the case of the popular multilayer perceptron structure. That is, the PNN is an analytic technique for identifying nonlinear relationships between system's inputs and outputs and is a flexible network structure constructed through the successive generation of layers from nodes represented in partial descriptions of I/O relatio of data. The experiment part of the study involves representative time series such as Box-Jenkins gas furnace data used across various neurofuzzy systems and a comparative analysis is included as well.

  • PDF

A Cascaded Fuzzy Inference System for University Non-Teaching Staff Performance Appraisal

  • Neogi, Amartya;Mondal, Abhoy Chand;Mandal, Soumitra Kumar
    • Journal of Information Processing Systems
    • /
    • v.7 no.4
    • /
    • pp.595-612
    • /
    • 2011
  • Most organizations use performance appraisal system to evaluate the effectiveness and efficiency of their employees. In evaluating staff performance, performance appraisal usually involves awarding numerical values or linguistic labels to employees performance. These values and labels are used to represent each staff achievement by reasoning incorporated in the arithmetical or statistical methods. However, the staff performance appraisal may involve judgments which are based on imprecise data especially when a person (the superior) tries to interpret another person's (his/her subordinate) performance. Thus, the scores awarded by the appraiser are only approximations. From fuzzy logic perspective, the performance of the appraisee involves the measurement of his/her ability, competence and skills, which are actually fuzzy concepts that can be captured in fuzzy terms. Accordingly, fuzzy approach can be used to handle these imprecision and uncertainty information. Therefore, the performance appraisal system can be examined using Fuzzy Logic Approach, which is carried out in the study. The study utilized a Cascaded fuzzy inference system to generate the performance qualities of some University non-teaching staff that are based on specific performance appraisal criteria.

Design and Stability Analysis of a Fuzzy Observer-based Fuzzy Speed Controller for a PM Synchronous Motor (영구자석 동기전동기를 위한 퍼지 관측기 기반의 퍼지 제어기의 설계 및 안정도 해석)

  • Jung,, Jin-Woo;Choi, Young-Sik;Yu, Dong-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • This paper proposes a new fuzzy load torque observer and a fuzzy speed regulator to guarantee a robust speed control of a permanent magnet synchronous motor (PMSM). Also, the LMI conditions are given for the existence of the fuzzy load torque observer and fuzzy speed controller, and the gains of the observer and controller are calculated. The stability of the proposed control system is analytically proven. To validate the effectiveness of the proposed observer-based fuzzy speed controller, the simulation and experimental results are presented. Finally, it is definitely demonstrated that the proposed control algorithm can be used to accurately control the speed of a PM synchronous motor.

Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks (PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계)

  • Oh, Sung-Kwun;Yoo, Sung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.

Fuzzy Optimum Design of Plane Steel Frames Using Refined Plastic Hinge Analysis and a Genetic Algorithm (개선소성힌지해석과 유전자 알고리듬을 이용한 평면 강골조 구조물의 퍼지최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Shon, Su Deok
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.147-160
    • /
    • 2006
  • GA-based fuzzy optimum design algorithm incorporated with the refined plastic hinge analysis method is presented in this study. In the refined plastic hinge analysis method, geometric nonlinearity is considered by using the stability functions of the beam-column members. Material nonlinearity is also considered by using the gradual stiffness degradation model, which considers the effects of residual stresses, moment redistribution through the occurence of plastic hinges, and the geometric imperfections of the members. In the genetic algorithm, the tournament selection method and the total weight of the steel frames. The requirements of load-carrying capacity, serviceability, ductility, and constructabil ity are used as the constraint conditions. In fuzzy optimization, for crisp objective function and fuzzy constraint s, the tolerance that is accepted is 5% of the constraints. Furthermore, a level-cut method is presented from 0 to 1 at a 0 .2 interval, with the use of the nonmembership function, to solve fuzzy-optimization problems. The values of conventional GA optimization and fuzzy GA optimization are compared in several examples of steel structures.

Fatigue Life Prediction using Fuzzy Reliability theory (퍼지신뢰성이론에 의한 피로수명 예측)

  • 심확섭;이치우;장건의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.672-675
    • /
    • 1995
  • Because of a sudden growth of the research of fatigue failure, recent machines or structures have been designed by damage tolerance design in many fields. Consequently, it is the most primary factor to clarity the specific character of fatique failure in the design of machines or structures considering reliability. A statistical analysis is required to analyze the outcome of an experiment or a life estimate by reason of that fatigue failure contains lots of random elements. Reliability analysis which has tukenn the place of the existing analyses in the consideration of the uncertainty of a material, is a very efficient way. Even reliability analysis, however, is not a perfect way to analyses the uncertainties of all the materials. This thesis would refer to a newly conceived data analysis that the coefficient of a system could cause the ambiguity of the relationship of an input and output.

  • PDF

Development of uncertainly failure information for FFTA (FFTA(Fuzzy Fault Tree Analysis)에 의한 불확실한 고장정보 연구)

  • 정영득;박주식;김건호;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.2
    • /
    • pp.113-121
    • /
    • 2001
  • Today, facilities are composed of many complex components or parts. Because of this characteristics, the frequency of failures is decreasing, but the strength of failures is increasing; therefore, the failure analysis about many complex components or parts was needed. In the former research about Fault Tree Analysis, failure data of similar facilities have been used for forecasting about target system or components, but in case that the system or components for forecasting failure is new or qualitative and quantitative data are given simultaneously, there are many difficulty in using Fault Tree Analysis with this incorrect failure data. Therefore, this paper deal with the Fault Tree Analysis method which be applied with Fuzzy theory in above case. In case that , therefore, if there is no the correct failure data, it is represented a system or components as qualitative variable. subsequently, it converted to the quantitative value using fuzzy theory, and the values used as the value for failure forecast.

  • PDF

Three-Phase Z-Source PWM Rectifier Based on the DC Voltage Fuzzy Control (직류전압 퍼지 제어 기반의 3상 Z-소스 PWM 정류기)

  • Qiu, Xiao-Dong;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.466-476
    • /
    • 2013
  • This paper describes a fuzzy control method to control the output voltage of the three-phase Z-source PWM rectifier. A fuzzy control system is a control system based on fuzzy logic, and the fuzzy controller uses a single input fuzzy theory with its fuzzification. Analytical structure of the simplest fuzzy controller is derived through the triangular membership functions with its fuzzification. By setting the membership functions of the fuzzy rules, fuzzy control is achieved. The PI portion of the output DC voltage controller is controlled by fuzzy method. To confirm the validity of the proposed method, the simulation and experiment were performed, The simulation is performed with PSIM and MATLAB/SIMULINK. For the experiment, we used a DSP(TMS320F28335) controller to compute the reference value and generate the PWM pulses. For the transient state performance of the output DC voltage control of Z-source PWM rectifier, the PI controller and fuzzy controller were compared, also the conventional PWM rectifier and Z-source PWM rectifier were compared. From the results, the Z-source rectifier could allow to buck or boost of the output DC voltage. Through the analysis of the transient state, we could observe that the fuzzy controller has better performance than the conventional PI controller.