• Title/Summary/Keyword: Future climate change

Search Result 1,425, Processing Time 0.036 seconds

A Simulation Study on Future Climate Change Considering Potential Forest Distribution Change in Landcover (잠재 산림분포 변화를 고려한 토지이용도가 장래 기후변화에 미치는 영향 모사)

  • Kim, Jea-Chul;Lee, Chong Bum;Choi, Sungho
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.105-117
    • /
    • 2012
  • Future climate according to land-use change was simulated by regional climate model. The goal of study was to predict the distribution of meteorological elements using the Weather Research & Forecasting Model (WRF). The KME (Korea Ministry of Environment) medium-category land-use classification was used as dominant vegetation types. Meteorological modeling requires higher and more sophisticated land-use and initialization data. The WRF model simulations with HyTAG land-use indicated certain change in potential vegetation distribution in the future (2086-2088). Compared to the past (1986-1988) distribution, coniferous forest area was decreased in metropolitan and areas with complex terrain. The research shows a possibility to simulate regional climate with high resolution. As a result, the future climate was predicted to $4.5^{\circ}$ which was $0.5^{\circ}$ higher than prediction by Meteorological Administration. To improve future prediction of regional area, regional climate model with HyTAG as well as high resolution initial values such as urban growth and CO2 flux simulation would be desirable.

Runoff Analysis of Climate Change Scenario in Gangjung Basin (기후변화 시나리오에 따른 강정천 유역의 유출특성 분석)

  • Lee, Jun-Ho;Yang, Sung-Kee;Kim, Min-Chul
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1649-1656
    • /
    • 2015
  • Jeju Island is the highest rain-prone area in Korea that possesses affluent water resources, but future climate changes are predicted to further increase vulnerabilities as resultant of increasing of extreme events and creating spatial-temporal imbalance in water resources. Therefore, this study aimed to provide basic information to establish a proper water resources management plan by evaluating the effects of climate change on water resources using climate change scenario. Direct runoff ratio for 15 years (2000~2014) was analyzed to be 11~32% (average of 23%), and average direct runoff ratio for the next 86 years (2015~2100) was found as 28%, showing an increase of about 22% compared to the present average direct runoff ratio (23%). To assess the effects of climate change on long-term runoff, monthly runoff variation of future Gangjeong watershed was analyzed by dividing three time periods as follows: Present (2000~2030), Future 1 (2031~2070) and Future 2 (2071~2100). The estimated results showed that average monthly runoff increases in the future and the highest runoff is shown by Future 2. Extreme values has been expected to occur more frequently in the future as compared to the present.

Generation of Weather Data for Future Climate Change for South Korea using PRECIS (PRECIS를 이용한 우리나라 기후변화 기상자료의 생성)

  • Lee, Kwan-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.54-58
    • /
    • 2011
  • According to the Fourth Assessment Report of the Inter governmental Panel on Climate Change(IPCC), climate change is already in progress around the world, and it is necessary to start mitigation and adaptation strategies for buildings in order to minimize adverse impacts. It is likely that the South Korea will experience milder winters and hotter and more extreme summers. Those changes will impact on building performance, particularly with regard to cooling and ventilation, with implications for the quality of the indoor environment, energy consumption and carbon emissions. This study generate weather data for future climate change for use in impacts studies using PRECIS (Providing REgional Climate for Impacts Studies). These scenarios and RCM (Regional Climate Model) are provided high-resolution climate-change predictions for a region generally consistent with the continental-scale climate changes predicted in the GCM (Global Climate Model).

  • PDF

The expectation of future climate change in relation to buildings and renewable energy (건물 및 재생에너지에 관한 미래의 기후변화 예측)

  • Lee, Kwan-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • According to the Fourth Assessment Report of Intergovernmental Panel on Climate Change(IPCC) Working Group III, climate change is already in progress around the world, and it is necessary to execute mitigation in order to minimize adverse impacts. This paper suggests future climate change needs, employing IPCC Special Report on Emissions Scenarios(SRES) to predict temperature rises over the next 100 years. This information can be used to develop sustainable architecture applications for energy efficient buildings and renewable energy. Such climate changes could also affected the resent supplies of renewable energy sources. This paper discusses one recent Fourth Assessment Report of IPPC (Mitigation of Climate Change) and the Hadley Centre climate simulation of relevant data series for South Korea.

Land Use Change Prediction of Cheongju using SLEUTH Model (SLEUTH 모델을 이용한 청주시 토지이용변화 예측)

  • Park, In-Hyeok;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.109-116
    • /
    • 2013
  • By IPCC climate change scenario, the socioeconomic actions such as the land use change are closely associated with the climate change as an up zoning action of urban development to increase green gas emission to atmosphere. Prediction of the land use change with rational quality can provide better data for understanding of the climate change in future. This study aims to predict land use change of Cheongju in future and SLEUTH model is used to anticipate with the status quo condition, in which the pattern of land use change in future follows the chronical tendency of land use change during last 25 years. From 40 years prediction since 2000 year, the area urbanized compared with 2000 year increases up to 87.8% in 2040 year. The ratios of the area urbanized from agricultural area and natural area in 2040 are decreased to 53.1% and 15.3%, respectively.

Future subsurface drainage in the light of climate change in Daegu, South Korea (기후변화에 따른 대구지역 지하배수 전망)

  • Nkomozepi, Temba;Chung, Sang-Ok
    • Current Research on Agriculture and Life Sciences
    • /
    • v.30 no.2
    • /
    • pp.97-104
    • /
    • 2012
  • Over the last century, drainage systems have become an integral component of agriculture. Climate observations and experiments using General circulation models suggest an intensification of the hydrologic cycle due to climate change. This study presents hydrologic simulations assessing the potential impact of climate change on subsurface drainage in Daegu, Republic of Korea. Historical and Long Ashton Research Station weather generator perturbed future climate data from 15 general circulation models for a field in Daegu were ran into a water management simulation model, DRAINMOD. The trends and variability in rainfall and Soil Excess Water ($SEW_{30}$) were assessed from 1960 to 2100. Rainfall amount and intensity were predicted to increase in the future. The predicted annual subsurface drainage flow varied from -35 to 40 % of the baseline value while the $SEW_{30}$ varied from -50 to 100%. The expected increases in subsurface drainage outflow require that more attention be given to soil and water conservation practices.

  • PDF

Generating global warming scenarios with probability weighted resampling and its implication in precipitation with nonparametric weather generator

  • Lee, Taesam;Park, Taewoong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.226-226
    • /
    • 2015
  • The complex climate system regarding human actions is well represented through global climate models (GCMs). The output from GCMs provides useful information about the rate and magnitude of future climate change. Especially, the temperature variable is most reliable among other GCM outputs. However, hydrological variables (e.g. precipitation) from GCM outputs for future climate change contain too high uncertainty to use in practice. Therefore, we propose a method that simulates temperature variable with increasing in a certain level (e.g. 0.5oC or 1.0oC increase) as a global warming scenario from observed data. In addition, a hydrometeorological variable can be simulated employing block-wise sampling technique associated with the temperature simulation. The proposed method was tested for assessing the future change of the seasonal precipitation in South Korea under global warming scenario. The results illustrate that the proposed method is a good alternative to levy the variation of hydrological variables under global warming condition.

  • PDF

Analysis of Inundation Area in the Agricultural Land under Climate Change through Coupled Modeling for Upstream and Downstream (상·하류 연계 모의를 통한 기후변화에 따른 농경지 침수면적 변화 분석)

  • Park, Seongjae;Kwak, Jihye;Kim, Jihye;Kim, Seokhyeon;Lee, Hyunji;Kim, Sinae;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.49-66
    • /
    • 2024
  • Extreme rainfall will become intense due to climate change, increasing inundation risk to agricultural land. Hydrological and hydraulic simulations for the entire watershed were conducted to analyze the impact of climate change. Rainfall data was collected based on past weather observation and SSP (Shared Socio-economic Pathway)5-8.5 climate change scenarios. Simulation for flood volume, reservoir operation, river level, and inundation of agricultural land was conducted through K-HAS (KRC Hydraulics & Hydrology Analysis System) and HEC-RAS (Hydrologic Engineering Center - River Analysis System). Various scenarios were selected, encompassing different periods of rainfall data, including the observed period (1973-2022), near-term future (2021-2050), mid-term future (2051-2080), and long-term future (2081-2100), in addition to probabilistic precipitation events with return periods of 20 years and 100 years. The inundation area of the Aho-Buin district was visualized through GIS (Geographic Information System) based on the results of the flooding analysis. The probabilistic precipitation of climate change scenarios was calculated higher than that of past observations, which affected the increase in reservoir inflow, river level, inundation time, and inundation area. The inundation area and inundation time were higher in the 100-year frequency. Inundation risk was high in the order of long-term future, near-term future, mid-term future, and observed period. It was also shown that the Aho and Buin districts were vulnerable to inundation. These results are expected to be used as fundamental data for assessing the risk of flooding for agricultural land and downstream watersheds under climate change, guiding drainage improvement projects, and making flood risk maps.

Assessing Future Water Demand for Irrigating Paddy Rice under Shared Socioeconomic Pathways (SSPs) Scenario Using the APEX-Paddy Model (APEX-paddy 모델을 활용한 SSPs 시나리오에 따른 논 필요수량 변동 평가)

  • Choi, Soon-Kun;Cho, Jaepil;Jeong, Jaehak;Kim, Min-Kyeong;Yeob, So-Jin;Jo, Sera;Owusu Danquah, Eric;Bang, Jeong Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.1-16
    • /
    • 2021
  • Global warming due to climate change is expected to significantly affect the hydrological cycle of agriculture. Therefore, in order to predict the magnitude of climate impact on agricultural water resources in the future, it is necessary to estimate the water demand for irrigation as the climate change. This study aimed at evaluating the future changes in water demand for irrigation under two Shared Socioeconomic Pathways (SSPs) (SSP2-4.5 and SSP5-8.5) scenarios for paddy rice in Gimje, South Korea. The APEX-Paddy model developed for the simulation of paddy environment was used. The model was calibrated and validated using the H2O flux observation data by the eddy covariance system installed at the field. Sixteen General Circulation Models (GCMs) collected from the Climate Model Intercomparison Project phase 6 (CMIP6) and downscaled using Simple Quantile Mapping (SQM) were used. The future climate data obtained were subjected to APEX-Paddy model simulation to evaluate the future water demand for irrigation at the paddy field. Changes in water demand for irrigation were evaluated for Near-future-NF (2011-2040), Mid-future-MF (2041-2070), and Far-future-FF (2071-2100) by comparing with historical data (1981-2010). The result revealed that, water demand for irrigation would increase by 2.3%, 4.8%, and 7.5% for NF, MF and FF respectively under SSP2-4.5 as compared to the historical demand. Under SSP5-8.5, the water demand for irrigation will worsen by 1.6%, 5.7%, 9.7%, for NF, MF and FF respectively. The increasing water demand for irrigating paddy field into the future is due to increasing evapotranspiration resulting from rising daily mean temperatures and solar radiation under the changing climate.

Modeling the potential climate change-induced impacts on future genus Rhipicephalus (Acari: Ixodidae) tick distribution in semi-arid areas of Raya Azebo district, Northern Ethiopia

  • Hadgu, Meseret;Menghistu, Habtamu Taddele;Girma, Atkilt;Abrha, Haftu;Hagos, Haftom
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • Background: Climate change is believed to be continuously affecting ticks by influencing their habitat suitability. However, we attempted to model the climate change-induced impacts on future genus Rhipicephalus distribution considering the major environmental factors that would influence the tick. Therefore, 50 tick occuance points were taken to model the potential distribution using maximum entropy (MaxEnt) software and 19 climatic variables, taking into account the ability for future climatic change under representative concentration pathways (RCPs) 4.5 and 8.5, were used. Results: MaxEnt model performance was tested and found with the AUC value of 0.99 which indicates excellent goodness-of-fit and predictive accuracy. Current models predict increased temperatures, both in the mid and end terms together with possible changes of other climatic factors like precipitation which may lead to higher tick-borne disease risks associated with expansion of the range of the targeted tick distribution. Distribution maps were constructed for the current, 2050, and 2070 for the two greenhouse gas scenarios and the most dramatic scenario; RCP 8.5 produced the highest increase probable distribution range. Conclusions: The future potential distribution of the genus Rhipicephalus show potential expansion to the new areas due to the future climatic suitability increase. These results indicate that the genus population of the targeted tick could emerge in areas in which they are currently lacking; increased incidence of tick-borne diseases poses further risk which can affect cattle production and productivity, thereby affecting the livelihood of smallholding farmers. Therefore, it is recommended to implement climate change adaptation practices to minimize the impacts.