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Abstract

Background: Climate change is believed to be continuously affecting ticks by influencing their habitat suitability.
However, we attempted to model the climate change-induced impacts on future genus Rhipicephalus distribution
considering the major environmental factors that would influence the tick. Therefore, 50 tick occuance points were
taken to model the potential distribution using maximum entropy (MaxEnt) software and 19 climatic variables,
taking into account the ability for future climatic change under representative concentration pathways (RCPs) 4.5
and 8.5, were used.

Results: MaxEnt model performance was tested and found with the AUC value of 0.99 which indicates excellent
goodness-of-fit and predictive accuracy. Current models predict increased temperatures, both in the mid and end
terms together with possible changes of other climatic factors like precipitation which may lead to higher tick-
borne disease risks associated with expansion of the range of the targeted tick distribution. Distribution maps were
constructed for the current, 2050, and 2070 for the two greenhouse gas scenarios and the most dramatic scenario;
RCP 8.5 produced the highest increase probable distribution range.

Conclusions: The future potential distribution of the genus Rhipicephalus show potential expansion to the new
areas due to the future climatic suitability increase. These results indicate that the genus population of the targeted
tick could emerge in areas in which they are currently lacking; increased incidence of tick-borne diseases poses
further risk which can affect cattle production and productivity, thereby affecting the livelihood of smallholding
farmers. Therefore, it is recommended to implement climate change adaptation practices to minimize the impacts.
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Background
Climate is a major factor that determines agricultural
production including livestock production, hydrologic
balances, input supplies, and other components of agri-
cultural systems (Aydinalp and Cresser, 2008).
The livestock sector is sensitive to climate change, and

it is expected that its production and productivity

performance is to be influenced directly by initiating fac-
tors like vectors and vector-borne diseases that can
cause significant losses in this sector (Calvosa et al.,
2009). The same study reported that the African live-
stock population will have an indirect damage by 2020
due to the direct impacts of parasites and their patho-
gens. The overall impacts on livestock production result
in a decline in production and productivity performance
as well as the export capacity of Ethiopia (Thornton
et al., 2009), and it is a huge threat for many who rely
on this sector (Gashaw, 2014).
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A changing climate in the future may affect livestock
production directly by hampering physiological perform-
ance. For example, excessive temperature can affect the
production and productivity performance of animals in-
directly by favoring certain vectors and vector-borne dis-
eases (Min et al., 2011). The temperature and rainfall
patterns in East Africa have been changing in the past two
decades (Parry et al., 2007). This has been affecting the
livestock in general and cattle production in particular
through direct influence on the distribution of organisms
like the tick species (Hoffmann, 2010). The IPCC report
also claims that among other consequences, climate
change will change the range of some of the vectors and
vector-borne infectious diseases (Parry et al., 2007).
Ticks are the most economically important parasites

and obligate hematophagous ectoparasites of domestic an-
imals in general and large animals like cattle in particular
(de la Fuente et al., 2006). As many other arthropods, ticks
are classified under the suborder Ixodida distributed
widely in the world and they are very sensitive to climate
due their dependence and spend most of their life cycle
stages on a complex combination of climate variables for
development and survival (Cumming, 2002). Therefore,
changing of climate probably have great contributions in
defining their abundance and distribution (faster develop-
ment and lower mortality) and the probability to survive
in a new area as the major driver in a given territory
(Cumming, 2002; Ogden et al., 2004).
Many recent studies have investigated the influence of

climate change on tick expansion in the different parts
of the world (Parola et al., 2008). It has been implicated
as an important driving force for the expansion of tick
habitat and the incidence of tick-borne diseases (Tokare-
vich et al., 2011), and it is globally a limiting factor in
the distribution of tick and tick-borne diseases (Ogden
et al., 2005). It is also recognized that ticks are spreading
to higher altitudes as a result of the effects of climate
change (Léger et al., 2013; Mannelli et al., 2012; Medlock
et al., 2013).
Describing the spatial patterns of vector and vector-borne

diseases and guiding the planning of external parasites like
tick control are now well established with the bold role of
risk mapping and have been demonstrated for a range of
major parasitic diseases (Hay et al., 2000). Besides, modeling
the spatial distribution of vectors and vector-borne diseases
is becoming crucial to understand the environmental deter-
minants of infection as well as for guiding the planning of
control programs (Slater, 2012). A focus in vector distribu-
tion modeling has expanded to evaluating the potential for
the establishment and spread of invasive vector species and
assessing vector species responses to global climate change
(Gonzalez, 2010; Roura-Pascual, 2008; Ward, 2007). How-
ever, there is still a gap to identify and document the future
impact of climate change on cattle tick distribution.

Therefore, modeling climate change-induced impacts on cat-
tle tick distribution will add a new insight to the research en-
vironment using the species distribution model (SDM) in
order to give recommendations on controlling the species
expansion.

Materials and methods
Study area
The cross-sectional study was conducted from January
to December 2016 in the semi-arid areas of Raya Azebo
district which is located at 12°47′55″ north and 039°38′
45″ east. The district is found to be about 128 km south
far from Mekelle, the capital city of Tigray Region,
Ethiopia (Fig. 1). It is also about 662 km north away
from Addis Ababa, the capital city of Ethiopia. The
agro-climate of the district is classified as midland
(80.6%), lowland (18%), and highland (1.4%) (Bewket,
2015). The altitude of the district ranges from 923 up to
2300 m a.s.l (Ethio-DEM 90).

Climate characterization of the district
Raya Azebo district is one of the drought-prone and
food insecure districts of Tigray regional state (Bewket,
2015). According to the 30 years raw climate data
(Temperature and Precipitation data starting from 1980
to 2009) obtained from NMA of Ethiopia, we
characterize the climate of the district as the monthly
rainfall varied from 10.9 up to 195 mm which is less than
the monthly evapotranspiration which ranges from 187
to 262 mm. The monthly average evapotranspiration re-
corded was 222 mm and exceeds the monthly average
rainfall which was 57mm. The mean monthly minimum
and maximum temperatures range from 12.9 to 18°C
and 26.8 to 31.5°C, respectively, and the annual average
mean temperature reaches 22°C. The district also experi-
ences very high evapotranspiration (Fig. 2). It is esti-
mated that the monthly annual ET is about 1712mm/
year, with an average even distribution of 57.08 mm
every month, and it exceeds the annual average rainfall
which is 685.2 mm/year with an average even distribu-
tion of 22.84 mm/month.

Data types, sources, and analysis approach
Tick presence data
This study was based on the presence and occurrence
points of the ixodid ticks of cattle breeds in the semi-
arid areas of Raya Azebo. Tick presence data was
checked from the previous research conducted in the
same study area by Hadgu et al. (2018). According to
this study report, out of the 90% tick prevalence re-
ported, six tick species that belong to the genera of Rhi-
picephalus (54%), Boophilus (5%), Amblyomma (3%),
and Hyalomma (2.7%) were identified and the most
dominant tick genus Rhipicephalus (54%) was taken as
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the study target in the present study. Therefore, having
the above tick presence data, geo-referenced locations,
or occurrence points that represent the genus Rhipice-
phalus of cattle tick was recorded in terms of coordinate
pair as decimal latitude/longitude in the WGS84 system
where the cattle population is supposed to be positive
for tick presence examination using a hand-held GPS
(Garmin eTrex device). Based on this, 50 GPS records or
location points for the sampling sites were collected and

used to run the model. Even though a bit few geographic
points were recorded, models built with few points,
while not as accurate as those built with large datasets
and potentially not appropriate for all applications, are
still useful (Hernandez et al., 2006). In line with this, it
has been indicated that after 50 points, the prediction of
the potential distribution stabilizes and does not change
significantly, even if more presence points are included
(Scheldeman and Zonneveld, 2010).

Fig. 1 Map of the study area

Fig. 2 Rainfall against evapotranspiration of Mehoni Station from1980 to 2009 (NMA, 2015)
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Bioclim data inputs
Bioclimatic datasets were used to construct the current
and future probable distribution of cattle tick species. To
quantify the environmental conditions limiting the distri-
bution of tick species, all the 19 bioclimatic variables in
the WorldClim database (Table 1) were downloaded from
(http://www.worldclim.org/tiles.php?Zone=27) (Hijmans
et al., 2005). The variables were selected because they have
high spatial resolution and good quality, contain biologic-
ally meaningful variables, and are widely applied for eco-
logical niche modeling having ecological contribution to
influence the species distribution (Elith J, 2010; Estrada-
Pena A, 2006; Estrada-Pena A, 2006). These raster vari-
ables have a spatial resolution of 30 arc second (*1 km2

per pixel) and were derived based on the temperature and
precipitation values which were clipped using ArcGIS 10
software to the study area (Raya Azebo shape file) for use
in maximum entropy (MaxEnt) model.
Projecting species distribution using only one or a

limited number of climate models will sample an un-
known fraction of the uncertainty in future conditions
(Beaumont et al., 2008). Therefore, to estimate the
current and future climate conditions, outputs from
two global climate models (GCMs) and two represen-
tative concentration pathways (RCPs) (RCP 4.5 and
RCP 8.5) were downloaded from (http://www.world-
clim.org/cmip5_30s) and clipped down to the study
area (Raya Azebo district) extent.

Two time segments, 2050 (average for the years 2041–
2060) and 2070 (average for the years 2061–2080), were
selected. The two GCMs named ACCESS1-0 (Australian
Community Climate and Earth System Simulation model)
(Niguse and Aleme, 2015) and CCSM4 (Community
Climate System Model) (Ruane et al., 2013) were selected
based on their availability of data for the selected RCPs
and time slices and widely used in the climate projections
and species distribution predictions.
The outcome of the two available greenhouse gas sce-

narios, i.e., RCP 4.5 and RCP 8.5 (Weyant et al., 2009),
was examined for each period. Thus, we had a succes-
sion of three different probable distribution maps for
each scenario, i.e., for the current, 2050, and 2070 time
slices.

Modeling procedures for tick distribution
In this study, MaxEnt Version 3.3.3k algorithm (https://
www.cs.princeton.edu/~schapire/maxent/) was used since
it has been found to perform better than many other mod-
eling methods to model animal and plant species (Phillips
et al., 2006; Porretta et al., 2013). It relates individual spe-
cimen locations to current environmental GEO datasets
to derive the probability of species occurrence (Phillips
et al., 2006). It is a presence-only modeling technique ra-
ther than absence locations (Phillips et al., 2006; Phillips
and Dudík, 2008).

Table 1 Code and description of variables

Code Description Scaling factor Units

Bio1 Annual Mean Temperature 10 Degrees Celsius

Bio2 Mean Diurnal Range (Mean of monthly (max temp – min temp) 10 Degrees Celsius

Bio3 Isothermality (BIO2/BIO7) 100 Degrees Celsius

Bio4 Temperature Seasonality (Standard Deviation ) 100 Degrees Celsius

Bio5 Max Temperature of Warmest Month 10 Degrees Celsius

Bio6 Min Temperature of Coldest Month 10 Degrees Celsius

Bio7 Temperature Annual Range (BIO5-BIO6) 10 Degrees Celsius

Bio8 Mean Temperature of Wettest Quarter 10 Degrees Celsius

Bio9 Mean Temperature of Driest Quarter 10 Degrees Celsius

Bio10 Mean Temperature of Warmest Quarter 10 Degrees Celsius

Bio11 Mean Temperature of Coldest Quarter 10 Degrees Celsius

Bio12 Annual Precipitation 1 Millimeters

Bio13 Precipitation of Wettest Month 1 Millimeters

Bio14 Precipitation of Driest Month 1 Millimeters

Bio15 Precipitation Seasonality ( Coefficient of Variation ) 100 Fraction

Bio16 Precipitation of Wettest Quarter 1 Millimeters

Bio17 Precipitation of Driest Quarter 1 Millimeters

Bio18 Precipitation of Warmest Quarter 1 Millimeters

Bio19 Precipitation of Coldest Quarter 1 Millimeters
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Current and projected probable distributions for the
cattle tick were built with the presence data points and
the 19 climatic variables using MaxEnt algorithm. All of
these were used to produce current and future (2050
and 2070) maps of probability of species distribution.
MaxEnt was able to produce a raster that automatically
displays habitat suitability or distribution map in the
range of 0–1 (logistic output). A 90% sensitivity criterion
was used to distinguish suitable from unsuitable habitat,
whereas the remaining 10% were used to calibrate.
These graphic images were then being transferred to
ArcGIS 10 using the ASCII to Raster tool. The threshold
maps for the two GCMs were computed after the ASCII
file was generated by the MaxEnt run, and the model
was able to produce predicted potential distribution
areas under future projections.
To calculate the future increase of the distribution

area in respect to the present model, presence/absence
maps using the minimum training presence threshold
were constructed using the geographical information
system (GIS) tool for analysis and management. To in-
terpret the variation in prediction, differences in future
distribution were calculated as of the current distribu-
tion because of the uncertainty in climate models
(Bourou et al., 2012); average of the two GCMs was
used. The threshold maps of the current and future dis-
tributions were subtracted in ArcGIS using map algebra
tool to produce the difference map of the current and
future. Then, the predicted potential distribution maps
(projected difference map) of the district under the
current and future conditions were compared. The
current and future distribution area coverage in square
kilometer of the tick species and the trend was also com-
puted under the two RCPs using DIVA-GIS software
version 7.5.

Model outputs
MaxEnt model has three major output data: raw, cumu-
lative, and logistic formats (Phillips and Dudík, 2008). In
our study, logistic output was selected since it is easy to
conceptualize and can be interpreted as an estimate of
the probability of presence for any given location ran-
ging from 0 to 1, where 0 signifies a very low probability
of species presence and 1 a very high relative probability
(Phillips et al., 2006; Signorini et al., 2014).
Jackknife results, which were displayed by MaxEnt

(using logistic output), showed how the predictions de-
pend on the variables, which greatly facilitates the inter-
pretation of a species’ ecological niche and its defining
or limiting environmental factors (Buermann et al.,
2008; Yost et al., 2008). Finally, only those variables that
showed significant contribution for all assessment
methods scored by the model were considered.

Model evaluation
One way to evaluate model performance is to use the
random test percentage setting in MaxEnt (Scheldeman
and Zonneveld, 2010). Area under the curve (AUC) of
the receiver operating characteristic (ROC) plots pro-
vided by MaxEnt was used to define thresholds of the
accuracy (Baldwin, 2009).
To develop ROC plot, the 75% observed species points

were used to calibrate the model (training data) and the
remaining 25% of the observed species points were used
to evaluate and predict models’ accuracy (Mbatudde
et al., 2012). Besides, 15 replicates and 5000 iterations
were set in the MaxEnt environment for validating the
model robustness (Young et al., 2011).
The area under curve (AUC) is a plot of sensitivity

(sensitivity representing how well the data correctly
predicts presence) and 1-specificity (specificity
provides a measure of correctly predicted absences)
(Fielding and Bell, 1997). The scores also served as
threshold-independent measure of the model perform-
ance in terms of sensitivity and specificity (Phillips
et al., 2006). The AUC values typically range between
0.5 (indicate a fit no better than that expected by
random) and 1.0 (indicate a perfect fit), while values
less than 0.5 indicates that a model fits worse than
random (Engler et al., 2004) and the AUC values for
the model were interpreted as Excellent if AUC >
0.90; Good if 0.80 > AUC = 0.90; Acceptable if 0.70
> AUC = 0.80; Bad if 0.60 > AUC = 0.70; and Invalid
if 0.50 > AUC = 0.60 (Araujo et al., 2005).

Results
Tick distribution under climatic conditions
Model performance and influencing factors
The MaxEnt model produced a distribution map of ixo-
did ticks of cattle breeds across the district at 1-km
spatial resolution. The average area under the ROC
curve for both training and testing is almost identical.
The average AUC test for the 15 replicate runs was
0.990, and the standard deviation is 0.002 (Fig. 3); the
value indicates “Excellent” predictive performance for
the model.
The MaxEnt software provides an analysis regarding

the contribution of each variable used for the con-
struction of the model. The final model produced
only five variables being the most important variables
in the three jackknife plots (Fig. 4) listed in Table 2
based on their contribution. Precipitation of the cold-
est quarter (Bio19), temperature annual range (Bio7),
annual precipitation (Bio12), maximum temperature
of the warmest month (Bio5), and precipitation of the
driest quarter (Bio17) were the most influential pre-
dictors of cattle tick distribution. Bio12 and Bio7 were
highly used by the model construction though the
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average relative contribution of the predictors of cat-
tle tick species distribution varied (Table 2).
Moreover, Bio19, Bio17, and the least Bio5 were iden-

tified as the second most important variables in this
finding. Using the relative contribution importance and
three jackknife tests which signify these variables seemed
to have the most useful information by itself after delet-
ing the zero contribution of the environmental factors.
Meaning, zero contribution factors have no any import-
ance on predicting the occurrence of the species. The
variable Bio5 appeared to have most information that is
not present in the other variables but later fell down
since it resulted in negative test gain and AUC, and the
model predictive performance improved when it was not
used for both test and AUC jackknife tests.

Potential geographic distribution (binary results)
Considering the future climate impact, future cattle tick
distribution map was developed for both 2050 and 2070
time slices using the two different RCPs (RCPs 4.5 and
8.5). The distribution of cattle tick species is expected to
increase in the future as compared to its current distri-
bution in the study area. The model predicted higher
risk of tick prevalence than currently present. Based on
this, the output probability occurrence values were seg-
mented in to five equal area categories to represent the
ranges of cattle tick distribution (Fig. 5). Currently 811
km2 is found to be high, medium, low, and very low suit-
able areas for cattle tick distribution. About 38.2% of the

land was found being occupied. The current predicts
distribution of cattle tick species occurrence in the study
area showed that the probability of the species to occur
in most of the red and orange colored areas as these
areas are highly to medium suitable for tick existence.
Regarding the projected tick distribution, both RCPs indi-

cated an increase in suitable area from the current to 2050
and 2070 (Fig. 5). The model predicted higher risk of species
incidence where a small area showed tick presence at
present. It will expand from 811 to 943 km2 and 1075.5 km2

under RCPs 4.5 and 8.5, respectively, during the 2050 and
expands to 876.5 and 1020 km2 under RCPs 4.5 and 8.5, re-
spectively, during the 2070. The cattle tick distribution will
be increased by 16.3% and 32.6% under RCPs 4.5 and 8.5, re-
spectively, during 2050 and increased by 8.1 and 25.8% under
RCPs 4.5 and 8.5, respectively, during 2070 when compared
with the current distribution map. From the two greenhouse
gas scenarios, the highest degree of potential distribution
change for the cattle tick was the most remarkable scenario
(RCP 8.5) both for 2050 and 2070 time slices. However, the
area decreased in the 2070 time slice due to the fact that
some area in this district would become unsuitable in this
scenario.

Discussions
Tick distribution under current and future climatic
conditions
The contribution of variables to the model accuracy was
determined according to Young et al. (2011) who stated

Fig. 3 Sensitivity vs 1-specificity for testing MaxEnt model performance
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that “the higher the variable scored the percentage of
contribution, the more impact that particular variable
has on predicting the occurrence of the species”. Consid-
ering this statement, temperature annual range (Bio7)
and annual precipitation (Bio12) are the most important
variables to explain the cattle tick distribution (Feilhauer
et al., 2012). Thus, annual temperature range and pre-
cipitation were capable of predicting the current and
future distribution of cattle ticks in the district.
Similar result was found out by Gray et al. (2009)

while modeling the climate change effect on ticks distri-
bution. The warmer annual temperature ranges and
changing annual precipitation patterns have been also
suggested by Lindgren and Jaenson (2006) as the main
derivers of tick to distribute to new areas. Leta et al.

(2013) also argued that these two variables are the most
important predictors for the specific R. appendiculatus
tick distribution in horn Africa in general and in
Ethiopia in particular, and it is predicted in areas with
high precipitation and moderate temperature. Moreover,
Ogden et al. (2008) also reported that certain ranges of
temperature and rainfall influences tick life cycle and
host-seeking activity. However, the monthly mean pre-
cipitation and temperature are most the important fac-
tors that can affect cattle tick distribution (Cumming,
2002).

Impact of climate change on cattle tick distribution
For the cattle tick distribution, the changing climate
could play a crucial role in expanding their habitat suit-
ability. Modeling the current and future distribution of
animal and plant organisms in relation to climate change
envelopes in terms of geographic range change, the dy-
namic biological abundance and the pathogen would be
useful for advanced studies on climate change-resilient
and adaptation practices, formulation epidemiologic
policies, and/or health-related policies and nature con-
servation (Howden et al., 2007; Parmesan et al., 2013;
Pindyck, 2013; Wardrop et al., 2013).

Table 2 Contribution of environmental variables

Time Slices Variables Contribution

Bio7 (%) Bio12 (%) Bio 19 (%) Bio 17(%) Bio 5(%)

2050_RCP4.5 43.5 53.2 30.6 2.9 3.5

2050_RCP8.5 46.9 31.7 21.3 19.6 19.3

2070_RCP4.5 43.6 46.9 12 10.6 7.7

2070_RCP8.5 30.6 58 11.8 19.3 9.2

Fig. 4 Results of jackknife plots

Hadgu et al. Journal of Ecology and Environment           (2019) 43:43 Page 7 of 11



According to different scholars, studies related to species
distribution were carried out at global scale and local scale
(Khormi and Kumar, 2014; Lafaye et al., 2013). Climate suit-
ability predictions for tick distribution studies in relation to
climate change modeling required to take responsibilities for
global and regional distributions maps, e.g., for H. margina-
tum (Estrada-Peña and Salman, 2013) and R. annulatus
(Williams et al., 2015), while modeling climate-induced im-
pacts on the current and future cattle tick distribution like
this study are limited at the national scale. On the other way,
this paper could have the first approach at the local scale to
model future distribution maps for cattle tick species in the
light of future climate scenarios. Our purpose was to map
the current and future cattle tick distribution of the risk area
of the district using the predicted models based on the most
up-to-date climate scenarios.

The general trend of areal expansion towards previ-
ously unsuitable areas of this research is in line with
other similar studies carried out in different areas on dif-
ferent tick species like Ixodes ricinus, I. scapularis, and
Rhipicephalus sanguineus (Gray et al., 2009; Ogden
et al., 2006; Porretta et al., 2013). The increase in
temperature, which is predicted to occur in the near fu-
ture (IPCC, 2007), is likely to affect the ecology and geo-
graphic distribution of many organisms, including tick
species. Such rising temperature is the main influential
factor to increase tick distribution and ticks’ develop-
ment time (Olwoch et al., 2008). For this reason, ticks
may get higher chance to attach themselves to their ap-
propriate host to get more food and shorten their hatch-
ing period besides having suitable environment for
further distribution.

Fig. 5 Current and future genus Rhipicephalus tick distribution map
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Moreover, cattle ticks could have more suitable condi-
tions to expand to new areas due to the direct effects of
climate change in terms of temperature and rainfall
(Gray et al., 2009) and this may power ticks and their
pathogens to expand their suitable areas (Zeman and
Lynen, 2010). However, this study did not have enough
evidence that an increase in temperature will result in an
increase in number of ticks by increasing rates of devel-
opment, rather by making ticks available to new areas by
changing the day length.
For all scenarios applied in this study, an increase in

the potential distribution area of the targeted tick of the
study area was recorded as compared to the current dis-
tribution map. The general trend of increment was more
prominent in the study district, and the future distribu-
tion of the genus Rhipicephalus will increase up to
1075.5 km2. This result goes adjacent with the forecast
trends made by Estrada-Peña and Salman (2013) and
Cumming and Van Vuuren (2006) who reported that cli-
mate play an obvious role in stimulating the spread of
ticks to the current unsuitable areas and predicted the
suitability for all African tick species will be about 1–9
million km2 in the near future.
The RCP 4.5 scenario predicts around 16.3% increase

in the area for 2050, which would rise to 8% by 2070 but
decrease by 8% from the 2050 time slice. An exciting
progression is shown in the case of RCP 8.5 after a large
increase projected for 2050; a decrease was noticed with
respect to the extent of suitable areas for the year 2070.
This result was in lined with that of Duan et al. (2016)
who reported most species have large changes in RCP
8.5 during the 2070 time slice. The explanation is that,
we may observe an expansion of species range towards
the new areas which were previously unsuitable in the
projected climate conditions of the district. Moreover,
Ostfeld and Brunner (2015) discussed that the changing
and warming climate will play a vital role in changing
the distribution of Ixodes ticks.

Conclusion and recommendations
Modeling of the geographic distribution patterns of the
genus Rhipicephalus tick shows positive distribution
changes. The modeling tool is considered a useful tool
for understanding the environmental requirements of
this targeted tick genus and their pathogens in the semi-
arid areas of the study district using presence data, spe-
cies distribution model (SDM), and GIS tools based on
the environmental factors’ contribution. While cattle tick
pathogens require the presence of suitable reservoir host
too, the assessment of their epidemiologic impact could
not be decoupled from the geographic distribution of
their cattle ticks. The present targeted genus tick dis-
plays an increase of their distribution towards presently
unsuitable areas of the study district. Although the

developed model demonstrates an excellent predictive
power, the issue of species ecology should also be con-
sidered. The selected ixodid tick in the district depends
for parts of their life on the availability of suitable hosts,
so the climate is only one essential determinant of their
occurrence. As the climate change will very likely affect
the hosts as well, this in turn can affect the cattle tick
distribution. Therefore, the present and future distribu-
tion of the targeted tick due to the changing climate
may worsen the food insecurity problem in general and
the cattle production in particular which the people of
the district are facing.
Based on the present findings of this study, the follow-

ing points are recommended to respond to the main im-
pacts of climate change on cattle production through
influencing the future tick distribution of the district.
✓ Strengthening the early warning system to provide

timely information about the climate change and varia-
bility’s effect on cattle directly and/or indirectly which
then help to develop preventive actions to the climatic
impacts should be primary action for the future.
✓ Community awareness about future impacts of cli-

mate change on cattle, tick occurance, and control strat-
egies should be implemented.

Need for future research areas
✓ Future impact of climate change on tick species abun-
dance, distribution and tick-borne disease distribution,
and cattle dynamics considering soil temperature, hu-
midity, vegetation index, competition, host type, and
other factors that have not been accounted in this study.
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