Browse > Article
http://dx.doi.org/10.5389/KSAE.2021.63.6.001

Assessing Future Water Demand for Irrigating Paddy Rice under Shared Socioeconomic Pathways (SSPs) Scenario Using the APEX-Paddy Model  

Choi, Soon-Kun (Climate Change Assessment Division, National Institute of Agricultural Sciences)
Cho, Jaepil (Convergence Center for Watershed Management, Integrated Watershed Management Institute)
Jeong, Jaehak (Texas A&M AgriLife Research)
Kim, Min-Kyeong (Climate Change Assessment Division, National Institute of Agricultural Sciences)
Yeob, So-Jin (Climate Change Assessment Division, National Institute of Agricultural Sciences)
Jo, Sera (Climate Change Assessment Division, National Institute of Agricultural Sciences)
Owusu Danquah, Eric (Council for Scientific and Industrial Research (CSIR) - Crops Research Institute)
Bang, Jeong Hwan (Climate Change Assessment Division, National Institute of Agricultural Sciences)
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.63, no.6, 2021 , pp. 1-16 More about this Journal
Abstract
Global warming due to climate change is expected to significantly affect the hydrological cycle of agriculture. Therefore, in order to predict the magnitude of climate impact on agricultural water resources in the future, it is necessary to estimate the water demand for irrigation as the climate change. This study aimed at evaluating the future changes in water demand for irrigation under two Shared Socioeconomic Pathways (SSPs) (SSP2-4.5 and SSP5-8.5) scenarios for paddy rice in Gimje, South Korea. The APEX-Paddy model developed for the simulation of paddy environment was used. The model was calibrated and validated using the H2O flux observation data by the eddy covariance system installed at the field. Sixteen General Circulation Models (GCMs) collected from the Climate Model Intercomparison Project phase 6 (CMIP6) and downscaled using Simple Quantile Mapping (SQM) were used. The future climate data obtained were subjected to APEX-Paddy model simulation to evaluate the future water demand for irrigation at the paddy field. Changes in water demand for irrigation were evaluated for Near-future-NF (2011-2040), Mid-future-MF (2041-2070), and Far-future-FF (2071-2100) by comparing with historical data (1981-2010). The result revealed that, water demand for irrigation would increase by 2.3%, 4.8%, and 7.5% for NF, MF and FF respectively under SSP2-4.5 as compared to the historical demand. Under SSP5-8.5, the water demand for irrigation will worsen by 1.6%, 5.7%, 9.7%, for NF, MF and FF respectively. The increasing water demand for irrigating paddy field into the future is due to increasing evapotranspiration resulting from rising daily mean temperatures and solar radiation under the changing climate.
Keywords
Paddy; irrigation demand; SSPs scenario; APEX-paddy model;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Doll, P., 2002. Impact of climate change and variability on irrigation requirements: a global perspective. Climatic Change 54(3): 269-293. doi:10.1023/A:1016124032231.   DOI
2 Choi, S. K., J. Jeong, J. Cho, S. O. Hur, D. Choi, and M. K. Kim, 2018. Assessing the climate change impacts on paddy rice evapotranspiration considering uncertainty. Journal of Climate Change Research 9: 143-156 (in Korean). doi:10.15531/KSCCR.2018.9.2.143.   DOI
3 Chung, S. O., 2010. Simulating evapotranspiration and yield response of rice to climate change using FAO-AquaCrop. Journal of the Korean Society of Agricultural Engineers, 52(3): 57-64 (in Korean). doi:10.5389/KSAE.2010.52.3.057.   DOI
4 Fischer, G., F. N. Tubiello, H. Van Velthuizen, and D. A. Wiberg, 2007. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990-2080. Technological Forecasting and Social Change 74(7): 1083-1107. doi:10.1016/j.techfore.2006.05.021.   DOI
5 Gornall, J., R. Betts, E. Burke, R. Clark, J. Camp, K. Willett, and A. Wiltshire, 2010. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1554): 2973-2989. doi:10.1098/rstb.2010.0158.   DOI
6 Hur, S. O., S. Choi, S. Yeop, S. C. Hong, and D. Choi, 2019. Relationship assessment on amount of irrigation water & productivity of rice by production function. Korean Journal of Environmental Agriculture 38(3): 133-138 (in Korean). doi:10.5338/KJEA.2019.38.3.23.   DOI
7 Jang, S. S., S. R. Ahn, H. K. Joh, and S. J. Kim, 2015. Assessment of climate change impact on Imha-dam watershed hydrologic cycle under RCP scenarios. Journal of the Korean Association of Geographic Information Studies 18(1): 156-169 (in Korean). doi:10.11108/kagis.2015.18.1.156.   DOI
8 Kamruzzaman, M., S. Hwang, S. K. Choi, J. Cho, I. Song, H. Jeong, J. H. Song, T. Jang, and S. H. Yoo, 2020. Prediction of the effects of management practices on discharge and mineral nitrogen yield from paddy fields under future climate using APEX-paddy model. Agricultural Water Management 241: 106345. doi:10.1016/j.agwat.2020.106345.   DOI
9 Miyazaki, N., K. Kamewada, and S. Iwasaki, 2005. Quality changes of agricultural water passing through paddy fields. Bulletin of the Tochigi Prefectural Agricultural Experiment Station 55: 45-55.
10 Min, S. H., K. M. Shim, Y. S. Kim, M. P. Jung, S. C. Kim, and K. H. So, 2013. Seasonal variation of carbon dioxide and energy fluxes during the rice cropping season at rice-barley double cropping paddy field of Gimje. Korean Journal of Agricultural and Forest Meteorology 15(4): 273-281 (in Korean). doi:10.5532/KJAFM.2013.15.4.273.   DOI
11 Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams, 2011. Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.
12 Rosenberg, N. J., B. A. Kimball, P. Martin, and C. F. Cooper, 1990. From climate and CO2 enrichment to evapotranspiration. Climate Change and US Water Resources 151-175.
13 Choi, S. K., 2019. APEX-Paddy model development and climate change impact assessment for paddy rice. Ph.D. Thesis, Seoul National University, South Korea. (in Korean)
14 Ayars, J. E., E. W. Christen, R. W. Soppe, and W. S. Meyer, 2006. The resource potential of in-situ shallow ground water use in irrigated agriculture: a review. Irrigation Science 24(3): 147-160. doi:10.1007/s00271-005-0003-y.   DOI
15 Boucher, O., S. Denvil, G. Levavasseur, A. Cozic, A. Caubel, M. A. Foujols, Y. Meurdesoif, P. Cadule, M. Devilliers, E. Dupont, and T. Lurton, 2019. IPSL IPSLCM6A-LR model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.1532.   DOI
16 Cho, J., W. Cho, and I. Jung, 2018. rSQM: Statistical downscaling toolkit for climate change scenario using nonparametric quantile mapping. Available online: cran. r-project.org/web/packages/rSQM/index.html (accessed on 25 August 2021).
17 Tao, F., and Z. Zhang, 2011. Impacts of climate change as a function of global mean temperature: maize productivity and water use in China. Climatic Change 105(3-4): 409-432. doi:10.1007/s10584-010-9883-9.   DOI
18 Cho, J. P., J. U. Kim, S. K. Choi, S. W. Hwang, and H. C. Jung, 2020. Variability analysis of climate extreme index using downscaled multi-models and grid-based CMIP5 climate change scenario data. Journal of Climate Change Research 11(2): 123-132 (in Korean). doi:10.15531/KSCCR.2020.11.2.123.   DOI
19 Dix, M., D. Bi, P. Dobrohotoff, R. Fiedler, I. Harman, R. Law, C. Mackallah, S. Marsland, S. O'Farrell, H. Rashid, J. Srbinovsky, A. Sullivan, C. Trenham, P. Vohralik, I. Watterson, G. Williams, M. Woodhouse, R. Bodman, F. B. Dias, C. Domingues, N. Hannah, A. Heerdegen, A. Savita, S. Wal es, C. Al l en, K. Druken, B. Evans, C. Richards, S. M. Ridzwan, D. Roberts, J. Smillie, K. Snow, M. Ward, and R. Yang, 2019. CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP SSP245 & SSP585. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.4321.   DOI
20 Tachiiri, K., M. Abe, T. Hajima, O. Arakawa, T. Suzuki, Y. Komuro, K. Ogochi, M. Watanabe, A. Yamamoto, H. Tatebe, M. A. Noguchi, R. Ohgaito, A. Ito, D. Yamazaki, A. Ito, K. Takata, S. Watanabe, and M. Kawamiya, 2019. MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP ssp585. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.5770.   DOI
21 The University of Melbourne, 2021. Greenhouse Gas Factsheets. Available online: https://greenhousegases.science.unimelb.edu.au (accessed on 25 August 2021).
22 Good, P., A. Sellar, Y. Tang, S. Rumbold, R. Ellis, D. Kelley, T. Kuhlbrodt, and J. Walton, 2019. MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.1567.   DOI
23 Ciais, P., M. Reichstein, N. Viovy, A. Granier, J. Ogee, V. Allard, M. Aubinet, N. Buchmann, C. Bernhofer, A. Carrara, F. Chevallier, N. De Noblet, A. D. Friend, P. Friedlingstein, T. Grunwald, B. Heinesch, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J. M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J. F. Soussana, M. J. Sanz, E. D. Schulze, T. Vesala, and R. Valentini, 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529-533. doi:10.1038/nature03972.   DOI
24 Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000. Climate extremes: observations, modeling, and impacts. Science 289(5487): 2068-2074. doi:10.1126/science.289.5487.2068.   DOI
25 Elliott, J., D. Deryng, C. Muller, K. Frieler, M. Konzmann, D. Gerten, M. Glotter, M. Florke, Y. Wada, N. Best, S. Eisner, B. M. Fekete, C. Folberth, I. Foster, S. N. Gosling, I. Haddeland, N. Khabarov, F. Ludwig, Y. Masaki, S. Olin, C. Rosenzweig, A. C. Ruane, Y. Satoh, E. Schmid, T. Stacke, Q. Tang, and D. Wisser, 2014. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences 111(9): 3239-3244. doi:10.1073/pnas.1222474110.   DOI
26 Hong, E. M., J. Y. Choi, S. H. Lee, S. H. Yoo, and M. S. Kang, 2009. Estimation of paddy rice evapotranspiration considering climate change using LARS-WG. Journal of the Korean Society of Agricultural Engineers 51(3): 25-35 (in Korean). doi:10.5389/KSAE.2009.51.3.025.   DOI
27 Voldoire, A., 2019. CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.1384.   DOI
28 Mera, R. J., D. Niyogi, G. S. Buol, G. G. Wilkerson, and F. H. Semazzi, 2006. Potential individual versus simultaneous climate change effects on soybean (C3) and maize (C4) crops: An agrotechnology model based study. Global and Planetary Change 54(1-2): 163-182. doi:10.1016/j.gloplacha.2005.11.003.   DOI
29 O'Neill, B. C., E. Kriegler, K. Riahi, K. L. Ebi, S. Hallegatte, T. R. Carter, R. Mathur, and D. P. Van Vuuren, 2014. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122(3): 387-400. doi:10.1007/s10584-013-0905-2.   DOI
30 John, J. G., C. Blanton, C. McHugh, A. Radhakrishnan, K. Rand, H. Vahlenkamp, C. Wilson, N. T. Zadeh, J. P. Dunne, R. Dussin, L. W. Horowitz, J. P. Krasting, P. Lin, S. Malyshev, V. Naik, J. Ploshay, E. Shevliakova, L. Silvers, C. Stock, M. Winton, and Y. Zeng, 2018. NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.1414.   DOI
31 Yoo, S. H., 2000. Soil Encyclopedia, Seoul National University Press, Seoul, South Korea. (in Korean)
32 Marshall, E., M. Aillery, S. Malcolm, and R. Williams, 2015. Agricultural production under climate change: the potential impacts of shifting regional water balances in the United States. American Journal of Agricultural Economics 97(2): 568-588. doi:10.1093/ajae/aau122.   DOI
33 Yukimoto, S., T. Koshiro, H. Kawai, N. Oshima, K. Yoshida, S. Urakawa, H. Tsujino, M. Deushi, T. Tanaka, M. Hosaka, H. Yoshimura, E. Shindo, R. Mizuta, M. Ishii, A. Obata, and Y. Adachi, 2019. MRI MRI-ESM2.0 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.638.   DOI
34 Kim, M. H., S. K. Choi, J. P. Cho, M. K. Kim, J. U. Eo, J. H. Bang, and J. M. Seong, 2021. Report on the climate change impact and vulnerability assessment on Agricultural environment and ecology. Phase I (2016-2020). National Institute of Agricultural Sciences, Wanju, Korea. (in Korean)
35 Lee, T. S., J. Y. Choi, S. H. Yoo, S. H. Lee, and Y. G. Oh, 2012. Analyzing consumptive use of water and yields of paddy rice by climate change. Journal of the Korean Society of Agricultural Engineers 54(1): 47-54 (in Korean). doi:10.5389/KSAE.2012.54.1.047.   DOI
36 Li, J., L. Fei, S. Li, C. Xue, Z. Shi, and R. Hinkelmann, 2020. Development of "water-suitable" agriculture based on a statistical analysis of factors affecting irrigation water demand. Science of The Total Environment 744: 140986. doi:10.1016/j.scitotenv.2020.140986.   DOI
37 Ministry of Environment (ME), 2020. Water and Future. Ministry of Environment. (in Korean)
38 Wieners, K. H., M. Giorgetta, J. Jungclaus, C. Reick, M. Esch, M. Bittner, V. Gayler, H. Haak, P. de Vrese, T. Raddatz, T. Mauritsen, J. S. von Storch, J. Behrens, V. Brovkin, M. Claussen, T. Crueger, I. Fast, S. Fiedler, S. Hagemann, C. Hohenegger, T. Jahns, S. Kloster, S. Kinne, G. Lasslop, L. Kornblueh, J. Marotzke, D. Matei, K. Meraner, U. Mikolajewicz, K. Modali, W. Muller, J. Nabel, D. Notz, K. Peters-von Gehlen, R. Pincus, H. Pohlmann, J. Pongratz, S. Rast, H. Schmidt, R. Schnur, U. Schulzweida, K. Six, B. Stevens, A. Voigt, and E. Roeckner, 2019. MPI-M MPIESM1.2-LR model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.793.   DOI
39 Kim, U. T., D. R. Lee, and C. S. Yoo, 2004. Effects of climate change on the streamflow for the Daechung dam watershed. Journal of Korea Water Resources Association 37(4): 305-314 (in Korean). doi:10.3741/JKWRA.2004.37.4.305.   DOI
40 Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3): 885-900. doi:10.13031/2013.23153.   DOI
41 Shiogama, H., M. Abe, and H. Tatebe, 2019. MIROC MIROC6 model output prepared for CMIP6 scenarioMIP SSP245 & 585. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.5746.   DOI
42 Sakaguchi, A., S. Eguchi, T. Kato, M. Kasuya, K. Ono, A. Miyata, and N. Tase, 2014. Development and evaluation of a paddy module for improving hydrological simulation in SWAT. Agricultural Water Management 137: 116-122. doi:10.1016/j.agwat.2014.01.009.   DOI
43 Schupfner, M., K. H. Wieners, F. Wachsmann, C. Steger, M. Bittner, J. Jungclaus, and E. Roeckner, 2019. DKRZ MPI-ESM1.2-HR model output prepared for CMIP6 ScenarioMIP SSP245 & SSP585. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.4398.   DOI
44 Seferian, R., 2019. CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.1395.   DOI
45 Choi, S. K., J. Jeong, S. J. Yeob, M. Kim, J. H. Kim, and M. K. Kim, 2020. Evaluating changes and uncertainty of nitrogen load from rice paddy according to the climate change scenario multi-model ensemble. Journal of The Korean Society of Agricultural Engineers, 62(5): 47-62 (in Korean). doi:10.5389/KSAE.2020.62.5.047.   DOI
46 Choi, S. K., M. K. Kim, J. Jeong, D. Choi, and S. O. Hur, 2017. Estimation of crop yield and evapotranspiration in paddy rice with climate change using APEX-paddy model. Journal of The Korean Society of Agricultural Engineers ,59(4): 27-42 (in Korean). doi:10.5389/KSAE.2017.59.4.027.   DOI
47 Song, J. H., I. Song, J. T. Kim, and M. S. Kang, 2015. Simulation of agricultural water supply considering yearly variation of irrigation efficiency. Journal of Korea Water Resources Association 48(6): 425-438 (in Korean). doi:10.3741/JKWRA.2015.48.6.425.   DOI
48 Stockle, C. O., J. R. Williams, N. J. Rosenberg, and C. A. Jones, 1992. A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I-Modification of the EPIC model for climate change analysis. Agricultural Systems 38(3): 225-238. doi:10.1016/0308-521X(92)90067-X.   DOI
49 Swart, N. C., J. N. S. Cole, V. V. Kharin, M. Lazare, J. F. Scinocca, N. P. Gillett, J. Anstey, V. Arora, J. R. Christian, Y. Jiao, W. G. Lee, F. Majaess, O. A. Saenko, C. Seiler, C. Seinen, A. Shao, L. Solheim, K. von Salzen, D. Yang, B. Winter, and M. Sigmond, 2019. CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.1317.   DOI
50 Seland, O., M. Bentsen, D. J. L. Olivie, T. Toniazzo, A. Gjermundsen, L. S. Graff, J. B. Debernard, A. K. Gupta, Y. He, A. Kirkevag, J. Schwinger, J. Tjiputra, K. S. Aas, I. Bethke, Y. Fan, J. Griesfeller, A. Grini, C. Guo, M. IIicak, I. H. H. Karset, O. A. Landgren, J. Liakka, K. O. Moseid, A. Nummelin, C. Spensberger, H. Tang, Z. Zhang, C. Heinze, T. Iversen, and M. Schulz, 2019. NCC NorESM2-LM model output prepration for CMIP6 ScenerioMIP SSP245 & SSP585. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.8253.   DOI
51 Van Vuuren, D. P., E. Kriegler, B. C. O'Neill, K. L. Ebi, K. Riahi, T. R. Carter, J. Edmonds, S. Hallegatte, T. Kram, R. Mathur, and H. Winkler, 2014. A new scenario framework for climate change research: scenario matrix architecture. Climatic Change 122(3): 373-386. doi:10.1007/s10584-013-0906-1.   DOI
52 Wada, Y., D. Wisser, S. Eisner, M. Florke, D. Gerten, I. Haddeland, N. Hanasaki, Y. Masaki, F. T. Portmann, T. Stacke, Z. Tessler, and J. Schewe, 2013. Multimodel projections and uncertainties of irrigation water demand under climate change. Geophysical Research Letters 40(17): 4626-4632. doi:10.1002/grl.50686.   DOI
53 Ziehn, T., M. A. Chamberl ain, R. M. Law, A. Lenton, R. W. Bodman, M. Dix, L. Stevens, Y. P. Wang, and J. Srbinovsky, 2020. The Australian Earth System Model : ACCESS-EMS1-5. Journal of Southern Hemisphere Earth Systems Science 70(1) : 193-214. doi : 10.1071/ES19035.   DOI
54 Volodin, E., E. Mortikov, A. Gritsun, V. Lykossov, V. Galin, N. Diansky, A. Gusev, S. Kostrykin, N. Iakovlev, A. Shestakova, and S. Emelina, 2019a. INM INM-CM4-8 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.12321.   DOI
55 Volodin, E., E. Mortikov, A. Gritsun, V. Lykossov, V. Galin, N. Diansky, A. Gusev, S. Kostrykin, N. Iakovlev, A. Shestakova, and S. Emelina, 2019b. INM INM-CM5-0 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.12322.   DOI
56 Williams, J. R., and R. C. Izaurralde, 2010. The APEX model. In Watershed models, 1st ed., CRC Press, Florida, USA, pp. 461-506.
57 Yun, D. K., S. O. Chung, and S. J. Kim, 2011. Climate change impacts on paddy water requirement. Journal of the Korean Society of Agricultural Engineers 53(4): 39-47 (in Korean). doi:10.5389/KSAE.2011.53.4.037.   DOI
58 Williams, J. R., R. C. Izaurralde, C. Williams, and E. M. Steglich, 2015. Agricultural policy/environmental extender model theoretical documentation version 0806. Texas A&M Blackland Research Center Temple.
59 Yoo, S. H., J. Y. Choi, S. H. Lee, Y. G. Oh, and N. Y. Park, 2012. The impacts of climate change on paddy water demand and unit duty of water using high-resolution climate scenarios. Journal of the Korean Society of Agricultural Engineers 54(2): 15-26 (in Korean). doi:10.5389/KSAE.2012.54.2.015.   DOI
60 Yoo, S. H., T. Kim, S. H. Lee, and J. Y. Choi, 2015. Trend analysis of projected climate data based on CMIP5 GCMs for climate change impact assessment on agricultural water resources. Journal of the Korean Society of Agricultural Engineers 57(5): 69-80 (in Korean). doi:10.5389/KSAE.2015.57.5.069.   DOI