• Title/Summary/Keyword: Fusion peptide

Search Result 139, Processing Time 0.026 seconds

Expression and Purification of an ACE-Inhibitory Peptide Multimer from Synthetic DNA in Escherichia coli

  • OH, KWANG-SEOK;YONG-SUNG PARK;HA-CHIN SUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • An angiotensin I-converting enzyme (EC 3.4.15.1) (ACE), which can convert inactive angiotensin I into angiotensin II, a vasoconstrictor, is one of the key enzymes in controlling hypertension. It is suggested that the inhibition of ACE prevents hypertension, and many inhibitory peptides have already been reported. In the current study, oligonucleotides encoding ACE inhibitory peptides (IY, VKY) were chemically synthesized and designed to be multimerised due to isoschizomer sites (BamHI, BglII). The cloned gene named AP3 was multimerised up to 6 times in pBluescript and expressed in BL2l containing pGEX-KG. The fusion protein (GST-AP3) was easily purified with a high recovery by an affinity resin, yielding 38 mg of synthetic AP3 from a 1-1 culture. The digestion of AP3 by chymotrypsin exhibited an $IC_50$ value of $18.53{\mu}M$. In conclusion, the present experiment indicated that AP3 could be used as a dietary antihypertensive drug, since the potent ACE inhibitory activity of AP3 could be activated by chymotrypsin in human intestine.

Proteomic Comparison of Gibberella moniliformis in Limited-Nitrogen (Fumonisin-Inducing) and Excess-Nitrogen (Fumonisin-Repressing) Conditions

  • Choi, Yoon-E;Butchko, Robert A.E.;Shim, Won-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.780-787
    • /
    • 2012
  • The maize pathogen Gibberella moniliformis produces fumonisins, a group of mycotoxins associated with several disorders in animals and humans, including cancer. The current focus of our research is to understand the regulatory mechanisms involved in fumonisin biosynthesis. In this study, we employed a proteomics approach to identify novel genes involved in the fumonisin biosynthesis under nitrogen stress. The combination of genome sequence, mutant strains, EST database, microarrays, and proteomics offers an opportunity to advance our understanding of this process. We investigated the response of the G. moniliformis proteome in limited nitrogen (N0, fumonisin-inducing) and excess nitrogen (N+, fumonisin-repressing) conditions by one- and two-dimensional electrophoresis. We selected 11 differentially expressed proteins, six from limited nitrogen conditions and five from excess nitrogen conditions, and determined the sequences by peptide mass fingerprinting and MS/MS spectrophotometry. Subsequently, we identified the EST sequences corresponding to the proteins and studied their expression profiles in different culture conditions. Through the comparative analysis of gene and protein expression data, we identified three candidate genes for functional analysis and our results provided valuable clues regarding the regulatory mechanisms of fumonisin biosynthesis.

A Cell-based Method to Monitor the Interaction between Hepatitis B Virus Capsid and Surface Proteins

  • Kim, Yun-Kyoung;Oh, Soo-Jin;Jin, Bong-Suk;Park, Chan-Hoo;Jeon, Hye Sung;Boo, Doo-Wan;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.577-581
    • /
    • 2009
  • Interactions between the surface and capsid proteins of the hepatitis B virus (HBV) are critical for the assembly of virus particles. In this study, we developed a cell-based method to visualize the interactions between the capsid and surface proteins of HBV. Capsid-GFP, a capsid protein fused to a green fluorescence protein (GFP), forms nucleocapsid-like structures in the cytoplasm of mammalian cells. It relocates to the plasma membranes in cells expressing PH-PreS, a fusion protein consisting of the PreS region of the HBV surface protein and the PH domain of PLC-$\gamma$. Membrane localization of the capsid-GFP in these cells is prevented by an inhibitory peptide that blocks the interaction between the capsid and surface proteins. This dynamic localization of capsid-GFP is applicable for screening compounds that may potentially inhibit or prevent the assembly process of HBV particles.

Epistatic Relationships of Two Regulatory Factors During Heterocyst Development

  • Kim, Young-Saeng;Kim, Il-Sup;Shin, Sun-Young;Kim, Hyun-young;Kang, Sung-Ho;Yoon, Ho-Sung
    • ALGAE
    • /
    • v.24 no.2
    • /
    • pp.85-91
    • /
    • 2009
  • The filamentous cyanobacterium Anabaena sp. Strain PCC 7120 produces a developmental patten of single hete- rocysts separated by approximately 10 vegetative cells. Heterocysts differentiate from vegetative cells and are spe- cialized for nitrogen fixation. The patS gene, which encodes a small peptide that inhibits heterocyst differentiation, is expressed in proheterocysts and plays a critical role in establishing the heterocyst pattem. Another key regulator of heterocyst development is the hetR gene. hetR mutants fail to produce heterocysts and extra copies of hetR on a plas- mid cause a multiple contiguous heterocyst phenotype. To elucidate the relationship between these two counter act- ing factors in the genetic regulatory pathway during heterocyst differentiation, the expression patterns of a patS-gfp and a hetR-gfp fusion were examined in a patS deletion and a hetR deletion strain. The results, in combination with the result from a hetR and patS double deletion strain, suggest patS and hetR are mutually antagonistic and the bal- ance between these two factors in tow different cell types (heterocysts and vegetative cells) may be critical during the decision making process on their cell fates.

Effective Platform for the Production of Recombinant Outer Membrane Vesicles in Gram-Negative Bacteria

  • Kunjantarachot, Anthicha;Phanaksri, Teva
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.621-629
    • /
    • 2022
  • Bacterial outer membrane vesicles (OMVs) typically contain multiple immunogenic molecules that include antigenic proteins, making them good candidates for vaccine development. In animal models, vaccination with OMVs has been shown to confer protective immune responses against many bacterial diseases. It is possible to genetically introduce heterologous protein antigens to the bacterial host that can then be produced and relocated to reside within the OMVs by means of the host secretion mechanisms. Accordingly, in this study we sought to develop a novel platform for recombinant OMV (rOMV) production in the widely used bacterial expression host species, Escherichia coli. Three different lipoprotein signal peptides including their Lol signals and tether sequences-from Neisseria meningitidis fHbp, Leptospira interrogans LipL32, and Campylobactor jejuni JlpA-were combined upstream to the GFPmut2 model protein, resulting in three recombinant plasmids. Pilot expression studies showed that the fusion between fHbp and GFPmut2 was the only promising construct; therefore, we used this construct for large-scale expression. After inducing recombinant protein expression, the nanovesicles were harvested from cell-free culture media by ultrafiltration and ultracentrifugation. Transmission electron microscopy demonstrated that the obtained rOMVs were closed, circular single-membrane particles, 20-200 nm in size. Western blotting confirmed the presence of GFPmut2 in the isolated vesicles. Collectively, although this is a non-optimized, proof-of-concept study, it demonstrates the feasibility of this platform in directing target proteins into the vesicles for OMV-based vaccine development.

Transduction of Familial Amyotrophic Lateral Sclerosis-related Mutant PEP-1-SOD Proteins into Neuronal Cells

  • An, Jae Jin;Lee, Yeom Pyo;Kim, So Young;Lee, Sun Hwa;Kim, Dae Won;Lee, Min Jung;Jeong, Min Seop;Jang, Sang Ho;Kang, Jung Hoon;Kwon, Hyeok Yil;Kang, Tae-Cheon;Won, Moo Ho;Cho, Sung-Woo;Kwon, Oh-Shin;Lee, Kil Soo;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.55-63
    • /
    • 2008
  • Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the selective death of motor neurons. Mutations in the SOD1 gene are responsible for a familial form of ALS (FALS). Although many studies suggest that mutant SOD1 proteins are cytotoxic, the mechanism is not fully understood. To investigate the role of mutant SOD1 in FALS, human SOD1 genes were fused with a PEP-1 peptide in a bacterial expression vector to produce in-frame PEP-1-SOD fusion proteins (wild type and mutants). The expressed and purified PEP-1-SOD fusion proteins were efficiently transduced into neuronal cells. Neurones harboring the A4V, G93A, G85R, and D90A mutants of PEP-1-SOD were more vulnerable to oxidative stress induced by paraquat than those harboring wild-type proteins. Moreover, neurones harboring the mutant SOD proteins had lower heat shock protein (Hsp) expression levels than those harboring wild-type SOD. The effects of the transduced SOD1 fusion proteins may provide an explanation for the association of SOD1 with FALS, and Hsps could be candidate agents for the treatment of ALS.

Soluble Expression of a Human MnSOD and Hirudin Fusion Protein in Escherichia coli, and Its Effects on Metastasis and Invasion of 95-D Cells

  • Yi, Shanze;Niu, Dewei;Bai, Fang;Li, Shuaiguang;Huang, Luyuan;He, Wenyan;Prasad, Anand;Czachor, Alexander;Tan, Lee Charles;Kolliputi, Narasaiah;Wang, Feng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1881-1890
    • /
    • 2016
  • Manganese superoxide dismutase (MnSOD) is a vital enzyme that protects cells from free radicals through eliminating superoxide radicals ($O^{2-}$). Hirudin, a kind of small active peptide molecule, is one of the strongest anticoagulants that can effectively cure thrombus diseases. In this study, we fused Hirudin to the C terminus of human MnSOD with the GGGGS linker to generate a novel dual-feature fusion protein, denoted as hMnSOD-Hirudin. The hMnSOD-Hirudin gene fragment was cloned into the pET15b (SmaI, CIAP) vector, forming a recombinant pET15b-hMnSOD-Hirudin plasmid, and then was transferred into Escherichia coli strain Rosetta-gami for expression. SDS-PAGE was used to detect the fusion protein, which was expected to be about 30 kDa upon IPTG induction. Furthermore, the hMnSOD-Hirudin protein was heavily detected as a soluble form in the supernatant. The purification rate observed after Ni NTA affinity chromatography was above 95%. The hMnSOD-Hirudin protein yield reached 67.25 mg per liter of bacterial culture. The identity of the purified protein was confirmed by western blotting. The hMnSOD-Hirudin protein activity assay evinced that the antioxidation activity of the hMnSOD-Hirudin protein obtained was $2,444.0{\pm}96.0U/mg$, and the anticoagulant activity of the hMnSOD-Hirudin protein was $599.0{\pm}35.0ATU/mg$. In addition, in vitro bioactivity assay showed that the hMnSOD-Hirudin protein had no or little cytotoxicity in H9c2, HK-2, and H9 (human $CD_4{^+}$, T cell) cell lines. Transwell migration assay and invasion assay showed that the hMnSOD-Hirudin protein could suppress human lung cancer 95-D cell metastasis and invasion in vitro.

Effect of Diphtheria Toxin on the Phospholipase D activity and Free Fatty Acid Release in HepG2 Cells (HepG2 세포의 포스포리파제 D 활성과 자유 지방산 방출에 대한 디프테리아 독소의 영향)

  • Koh, Eun-Hie
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.1
    • /
    • pp.22-30
    • /
    • 2015
  • The effect of diphtheria toxin on cell membrane lipids was studied by examining the phospholipase D (PLD) activity and free fatty acids (FFA) release in HepG2 cells. The diphtheria toxin effects on lipid alteration show apparently maximal at pH 5.1, stimulating PLD activity nearly 3.5 fold and enhancing FFA release approximately 5 fold over the control. These results indicate that the membrane is perturbed and its lipid component is rearranged during the diphtheria toxin translocation. Digitonin, a random membrane perturbing detergent, exhibit about four-fold higher perturbation effect over the diphtheria toxin at neutral pH. This observation suggests that the membrane perturbation induced by diphtheria toxin appears to be rather selective. To investigate the cause of the membrane perturbation, Cibacron blue, an inhibitor of membrane pore formation, and hemagglutinin, an influenza virus with fusion peptide, were tested for their effects on diphtheria toxin action. Cibacron blue decreased the diphtheria toxin effect by almost 50%, but the lipid alteration induced by hemagglutinin was similar to the diphtheria toxin effect. These observations imply that the membrane perturbation induced by diphtheria toxin may be caused by a combination of pore formation and insertion of hydrophobic peptide of toxin to the membrane as well. Additionally, we found that the diphtheria toxin increased the HepG2 cells permeability but the cells viability was maintained at high level at the same time. DNA fragmentation which is related to apoptosis was not induced by the toxin. Under these conditions, we could demonstrate that the lipid alteration of HepG2 cells was brought about by diphtheria toxin at acidic pH.

Impact of RGD Peptide Tethering to IL24/mda-7 (Melanoma Differentiation Associated Gene-7) on Apoptosis Induction in Hepatocellular Carcinoma Cells

  • Bina, Samaneh;Shenavar, Fatemeh;Khodadad, Mahboobeh;Haghshenas, Mohammad Reza;Mortazavi, Mojtaba;Fattahi, Mohammad-Reza;Erfani, Nasrollah;Hosseini, Seyed Younes
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.6073-6080
    • /
    • 2015
  • Background: Melanoma differentiation-associated gene-7 (MDA-7)/interleukin-24 (IL-24), a unique tumor suppressor gene, has killing activity in a broad spectrum of cancer cells. Herein, plasmids producing mda-7 proteins fused to different RGD peptides (full RGD4C and shortened RGD, tRGD) were evaluated for apoptosis induction with a hepatocellular carcinoma cell line, Hep-G2. The study aim was to improve the apoptosis potency of mda-7 by tethering to RGD peptides. Materials and Methods: Three plasmids including mda-7, mda-7-RGD and mda-7-tRGD genes beside a control vector were transfected into Hep-G2 cells. After 72 hours incubation, cell viability was evaluated by MTT assay. In addition, the rate of apoptosis was analyzed by flow cytometry using PI/annexin staining. To detect early events in apoptosis, 18 hours after transfection, expression of the BAX gene was quantified by real time PCR. Modeling of proteins was also performed to extrapolate possible consequences of RGD modification on their structures and subsequent attachment to receptors. Results and Conclusions: In MTT assays, while all mda-7 forms showed measurable inhibition of proliferation, unmodified mda-7 protein exhibited most significant effect compared to control plasmid (P<0.001). Again, flow cytometry analysis showed a significant apoptosis induction by simple mda-7 gene but not for those RGD-fused mda-7 proteins. These findings were also supported by expression analysis of BAX gene (P<0.001). Protein modelling analysis revealed that tethering RGD at the end of IL-24/Mda7 disrupt attachment to cognate receptor, IL-20R1/IL-20R2. In conclusion, fusion of RGD4C and shortened RGD peptides to carboxyl terminal of mda7, not only reduce apoptosis property in vitro but also disrupt receptor attachment as demonstrated by protein modelling.

Inhibition of ERK1/2 Activation and Cytoskeleton Rearrangement by the Recombinant Protein of Plasminogen Kringle 5 (Plasminogen kringle 5 재조합 단백질에 의한 ERK1/2 활성화 및 세포골격 재배열 억제)

  • Ha, Jung-Min;Kim, Hyun-Kyung;Kim, Myoung-Rae;Joe, Young-Ae
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1199-1206
    • /
    • 2006
  • Plasminogen kringle 5 is a potent inhibitor of endothelial tell proliferation like an endogenous angiogenesis inhibitor, angiostatin consisting of plasminogen kringles 1-4. In this study, we produced the recombinant protein of plasminogen kringle 5 (PK5) employing an Pichia expression system and examined its. effect on~endothelial cell migration and its possible inhibitory mechanism. PK5 was expressed in Pichia pastoris GS115 by fusion of the cDNA spanning from Thr456 to Phe546 to the secretion signal sequence of a-factor prepro-peptide. After methanol induction, the secreted PK5 was purified by using S-spin column. SDS-PACE analysis of the purified protein showed one major band of approximately 10kDa. In in vitro migration assays, the purified protein inhibited dose-dependently the migration of human umbilical endothelial cells (HUVECs) induced by basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) with an $IC_{50}$ of approximately 500nM. Accordingly, it inhibited bfGF-stimulated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in HUVECs at 500nM. In addition, it also potently inhibited bFGF-induced cytoskeletal rearrangement of HUVECs. Thus, these results suggest that Pichia-produced PK5 effectively inhibits endothelial cell migration, in part by suppression of ERK1/2 activation and blocking cytoskeleton rearrangement.