Browse > Article
http://dx.doi.org/10.4014/jmb.2003.03023

Effective Platform for the Production of Recombinant Outer Membrane Vesicles in Gram-Negative Bacteria  

Kunjantarachot, Anthicha (Chulabhorn International College of Medicine, Thammasat University)
Phanaksri, Teva (Chulabhorn International College of Medicine, Thammasat University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.5, 2022 , pp. 621-629 More about this Journal
Abstract
Bacterial outer membrane vesicles (OMVs) typically contain multiple immunogenic molecules that include antigenic proteins, making them good candidates for vaccine development. In animal models, vaccination with OMVs has been shown to confer protective immune responses against many bacterial diseases. It is possible to genetically introduce heterologous protein antigens to the bacterial host that can then be produced and relocated to reside within the OMVs by means of the host secretion mechanisms. Accordingly, in this study we sought to develop a novel platform for recombinant OMV (rOMV) production in the widely used bacterial expression host species, Escherichia coli. Three different lipoprotein signal peptides including their Lol signals and tether sequences-from Neisseria meningitidis fHbp, Leptospira interrogans LipL32, and Campylobactor jejuni JlpA-were combined upstream to the GFPmut2 model protein, resulting in three recombinant plasmids. Pilot expression studies showed that the fusion between fHbp and GFPmut2 was the only promising construct; therefore, we used this construct for large-scale expression. After inducing recombinant protein expression, the nanovesicles were harvested from cell-free culture media by ultrafiltration and ultracentrifugation. Transmission electron microscopy demonstrated that the obtained rOMVs were closed, circular single-membrane particles, 20-200 nm in size. Western blotting confirmed the presence of GFPmut2 in the isolated vesicles. Collectively, although this is a non-optimized, proof-of-concept study, it demonstrates the feasibility of this platform in directing target proteins into the vesicles for OMV-based vaccine development.
Keywords
Recombinant outer membrane vesicles; gram-negative bacteria; lipoprotein signal peptide; platform;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gerritzen MJH, Martens DE, Wijffels RH, van der Pol L, Stork M. 2017. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnol. Adv. 35: 565-574.   DOI
2 Zuckert WR. 2014. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim. Biophys. Acta 1843: 1509-1516.   DOI
3 Leitner D, Lichtenegger S, Temel P, Zingl F, Ratzberger D, Roier S, et al. 2015. A combined vaccine approach against Vibrio cholerae and ETEC based on outer membrane vesicles. Front. Microbiol. 6: 823.   DOI
4 Biagini M, Spinsanti M, De Angelis G, Tomei S, Ferlenghi I, Scarselli M, et al. 2016. Expression of factor H binding protein in meningococcal strains can vary at least 15-fold and is genetically determined. Proc. Natl. Acad. Sci. USA 113: 2714-2719.   DOI
5 Kulkarni HM, Jagannadham MV. 2014. Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology 160: 2109-2121.   DOI
6 Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, et al. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37: 420-423.   DOI
7 Gerritzen MJH, Martens DE, Uittenbogaard JP, Wijffels RH, Stork M. 2019. Sulfate depletion triggers overproduction of phospholipids and the release of outer membrane vesicles by Neisseria meningitidis. Sci. Rep. 9: 4716.   DOI
8 Bartolini E, Ianni E, Frigimelica E, Petracca R, Galli G, Berlanda Scorza F, et al 2013. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro. J. Extracell. Vesicles 2: 20181.   DOI
9 Rappazzo CG, Watkins HC, Guarino CM, Chau A, Lopez JL, DeLisa MP, et al. 2016. Recombinant M2e outer membrane vesicle vaccines protect against lethal influenza A challenge in BALB/c mice. Vaccine 34: 1252-1258.   DOI
10 Jin S, Joe A, Lynett J, Hani EK, Sherman P, Chan VL. 2001. JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol. Microbiol. 39: 1225-1236.   DOI
11 Kulp A, Kuehn MJ. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64: 163-184.   DOI
12 Yu Y-j, Wang X-h, Fan G-C. 2018. Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/ inflammatory diseases. Acta Pharmacol. Sin. 39: 514-533.   DOI
13 Kaparakis-Liaskos M, Ferrero RL. 2015. Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol. 15: 375-387.   DOI
14 Acevedo R, Fernandez S, Zayas C, Acosta A, Sarmiento M, Ferro V, et al. 2014. Bacterial outer membrane vesicles and vaccine applications. Front. Immunol. 5: 121.   DOI
15 van der Pol L, Stork M, van der Ley P. 2015. Outer membrane vesicles as platform vaccine technology. Biotechnol. J. 10: 1689-1706.   DOI
16 Zavan L, Bitto NJ, Johnston EL, Greening DW, Kaparakis-Liaskos M. 2019. Helicobacter pylori growth stage determines the size, protein composition, and preferential cargo packaging of outer membrane vesicles. Proteomics 19: 1800209.
17 Orench-Rivera N, Kuehn MJ. 2016. Environmentally controlled bacterial vesicle-mediated export. Cell. Microbiol. 18: 1525-1536.   DOI
18 Gerritzen MJH, Maas RHW, van den Ijssel J, van Keulen L, Martens DE, Wijffels RH, Stork M. 2018. High dissolved oxygen tension triggers outer membrane vesicle formation by Neisseria meningitidis. Microb. Cell Fact. 17: 157.   DOI
19 Ellis TN, Kuehn MJ. 2010. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 74: 81-94.   DOI
20 Gnopo YMD, Watkins HC, Stevenson TC, DeLisa MP, Putnam D. 2017. Designer outer membrane vesicles as immunomodulatory systems - Reprogramming bacteria for vaccine delivery. Adv. Drug Deliv. Rev. 114: 132-142.   DOI
21 Pinne M, Haake DA. 2013. LipL32 is a subsurface lipoprotein of Leptospira interrogans: presentation of new data and reevaluation of previous studies. PLoS One 8: e51025-e51025.   DOI
22 Seib KL, Scarselli M, Comanducci M, Toneatto D, Masignani V. 2015. Neisseria meningitidis factor H-binding protein fHbp: a key virulence factor and vaccine antigen. Expert Rev. Vaccines 14: 841-859.   DOI
23 Kim OY, Hong BS, Park K-S, Yoon YJ, Choi SJ, Lee WH, et al. 2013. Preparation of outer membrane vesicle from Escherichia coli. Bio-protocol. 3: e995.
24 van de Waterbeemd B, Mommen GPM, Pennings JLA, Eppink MH, Wijffels RH, van der Pol LA, et al. 2013. Quantitative proteomics reveals distinct differences in the protein content of outer membrane vesicle vaccines. J. Proteome Res. 12: 1898-1908.   DOI
25 Salverda MLM, Meinderts SM, Hamstra H-J, Wagemakers A, Hovius JWR, van der Ark A, et al. 2016. Surface display of a borrelial lipoprotein on meningococcal outer membrane vesicles. Vaccine 34: 1025-1033.   DOI
26 O'Dwyer CA, Reddin K, Martin D, Taylor SC, Gorringe AR, Hudson MJ, et al. 2004. Expression of heterologous antigens in commensal Neisseria spp.: preservation of conformational epitopes with vaccine potential. Infect. Immun. 72: 6511-6518.   DOI
27 Kuipers K, Daleke-Schermerhorn MH, Jong WSP, ten Hagen-Jongman CM, van Opzeeland F, Simonetti E, et al. 2015. Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization. Vaccine 33: 2022-2029.   DOI
28 Green ER, Mecsas J. 2016. Bacterial secretion systems: an overview. Microbiol. Spectr. 4: 10.1128/microbiolspec.VMBF-0012-2015.   DOI
29 Konovalova A, Silhavy TJ. 2015. Outer membrane lipoprotein biogenesis: lol is not the end. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370: 20150030.   DOI