• Title/Summary/Keyword: Fusarium wilt.

Search Result 207, Processing Time 0.027 seconds

Potential Reasons for Prevalence of Fusarium Wilt in Oriental Melon in Korea

  • Seo, Yunhee;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.249-263
    • /
    • 2017
  • This study aims to examine the potential reasons for the current prevalence of the fusarium wilt in the oriental melon. Twenty-seven Fusarium isolates obtained from oriental melon greenhouses in 2010-2011 were identified morphologically and by analysis of elongation factor-1 alpha gene (EF-$1{\alpha}$) and internal transcribed spacer (ITS) rDNA sequences as 6 Fusarium species (8 isolates of F. oxysporum, 8 F. commune, 5 F. proliferatum, 3 F. equiseti, 2 F. delphinoides, and 1 F. andiyazi), which were classified as same into 6 EF-$1{\alpha}$ sequence-based phylogenetic clades. Pathogenicity of the Fusarium isolates on the oriental melon was highest in F. proliferatum, next in F. oxysporum and F. andiyazi, and lowest in the other Fusarium species tested, suggesting F. proliferatum and F. oxysporum were major pathogens of the oriental melon, inducing stem rots and vascular wilts, respectively. Oriental melon and watermelon were more susceptible to F. oxysporum than shintosa and cucumber; and cucumber was most, oriental melon and watermelon, medially, and shintosa was least susceptible to F. proliferatum, whose virulence varied among and within their phylogenetic subclades. Severe root-knot galls were formed on all the crops infected with Meloidogyne incognita; however, little indication of vascular wilts or stem and/or root rots was shown by the nematode infection. These results suggest the current fungal disease in the oriental melon may be rarely due to virulence changes of the fusarium wilt pathogen and the direct cause of the severe root-knot nematode infection, but may be potentially from other Fusarium pathogen infection that produces seemingly wilting caused by severe stem rotting.

Inactivation of Wilt Pathogen(Fusarium oxysporum f. sp.) using Plasma in Tomato Hydroponic Cultivation (토마토 수경재배에서 플라즈마를 이용한 시들음병균(Fusarium oxysporum f. sp.) 불활성화)

  • Dong-Seog Kim;Young-Seek Park
    • Journal of Environmental Science International
    • /
    • v.33 no.5
    • /
    • pp.323-332
    • /
    • 2024
  • Circulating hydroponic cultivation has the advantage of reducing soil and water pollution problems caused by discharge of fertilizer components because the nutrient solution is reused. However, cyclic hydroponic cultivation has a low biological buffering capacity and can cause outbreaks of infectious root pathogens. Therefore, it is necessary to develop technologies or disinfection systems to control them. This study used dielectric barrier discharge plasma, which generates various persistent oxidants, to treat Fusarium oxysporum f. sp., a pathogen that causes wilt disease. Batch and intermittent continuous inactivation experiments were conducted, and the results showed that the total residual oxidant was persistent in intermittent plasma treatment at intervals of 2-3 days, and F. oxysporum was treated efficiently. Intermittent plasma treatment did not inhibit the growth of tomatoes.

Determination of an Effective Method to Evaluate Resistance of Bottle Gourd Plant to Fusarium oxysporum f. sp. lagenaria (박 덩굴쪼김병 저항성 검정조건 구명)

  • Kim, Sang Gyu;Lee, Oak Jin;Lee, Sun Yi;Kim, Dae Young;Huh, Yun-Chan;An, Se Woong;Jang, Yoon ah;Moon, Ji hye
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.96-102
    • /
    • 2020
  • Fusarium wilt caused by Fusarium oxysporum is a devastating disease limiting production of watermelon in Korea. The best way to control diseases is to use resistant gourd rootstock on watermelon. This study was conducted to establish an efficient screening method for resistant bottle gourd to Fusarium oxysporum f. sp. lagenaria. To develop an efficient inoculation method, incubation temperature after inoculation (15, 20, 25, and 30℃), inoculum concentration (1 × 105, 5 × 105, 1 × 106, and 5 × 106 conidia·mL-1), and growth stages of seedlings (7, 10, 13, and 16 days) was investigated. Disease development of Fusarium wilt of bottle gourd was little affected by differences in incubation temperature and growth stages of seedlings. But resistant lines were more susceptible and appeared more severe symptoms at the higher inoculation level. Taken together, we suggest that an effective screening method for resistant gourd plant to Fusarium wilt is to dip the roots of 10-day old seedlings in spore suspension of 1 × 105 - 1 × 106 conidia·mL-1, for 30 min, to transplant the seedlings into a non-infected soil, and then to incubate the inoculated plants in a growth room at 25℃ for 3 weeks to develop Fusarium wilt.

Simple Mass-screening Methods for Resistance of Tomato to Fusarium oxysporum f. sp. lycopersici (토마토 시들음병에 대한 간편 대량 저항성 검정법)

  • Park, Myung Soo;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.110-116
    • /
    • 2013
  • This study was carried out to establish the simple mass-screening methods for resistant tomato to Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (FOL). Root dip inoculation method has been used in many studies on the resistance of tomato to disease. On the other hand, in mass-screening for resistant tomato to Fusarium wilt, the inoculation method is time-consuming and laborious procedure. Disease development of two FOL isolates on two cultivars of tomato according to inoculation method including root dip, tip and scalpel methods were investigated. In compatible interaction, tomato seedlings of each cultivar inoculated by tip method showed the lower and more variable disease severities than by root dip method. Whereas the seedlings by scalpel method represented clear resistant and susceptible responses to Fusarium wilt as root dip method. The resistance degree of each cultivar inoculated with FOL isolates by scalpel method was hardly affected by the tested incubation temperature and inoculum concentration. On the basis of the results, we suggest scalpel inoculation method as an efficient mass-screening method for resistant of tomato cultivars to Fusarium wilt. Roots of tomato seedlings at two-leaf stage grown in plastic cell tray were injured with scalpel and then spore suspension (more than $1{\times}10^7\;conidia{\cdot}mL^{-1}$) of FOL was poured directly on the roots. The infected plants were cultivated in a growth room at $25-30^{\circ}C$ for 4 weeks with 12-hours light a day.

Resistance Characteristics of Watermelon Cultivars to Fusarium oxysporum f. sp. niveum (수박 품종들의 덩굴쪼김병균에 대한 저항성 특성)

  • Soo Min Lee;Eun Ju Jo;Hun Kim;Gyung Ja Choi
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.258-267
    • /
    • 2023
  • Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (Fon) is a serious disease in watermelon cultivation. Most of commercialized watermelon cultivars to Fusarium wilt are susceptible in Korea. Fon isolates were divided into four races (races 0, 1, 2, and 3), based on pathogenicity in four watermelon differentials including 'Sugar baby', 'Charleston gray', 'Calhoun gray' and 'PI-296341-FR'. We obtained 7 isolates of Fon and tested to determine race of the fungal strains. Fon KACC 40902 and Fon HA were race 0 and Fon NW1, Fon NW2, Fon CW and Fon KACC 40901 were race 1. And Fon KACC 40905 was race 2, but race 3 isolate of Fon was not founded. We also tested virulence of seven Fon isolates on three-susceptible cultivars of watermelon. The isolates showed different virulence on the cultivars. In addition, to study the resistance characteristics of watermelon to Fon, we selected three moderately or highly resistant cultivars of watermelon and occurrence of Fusarium wilt in seedlings of the cultivars by seven Fon isolates was investigated. Among them, 'Calhoun gray' is highly resistant to six Fon isolates except Fon KACC 40905. On the other two cultivars, disease severity of Fusarium wilt caused by each isolate was positively correlated with the virulence of the Fon isolates. The results suggest that resistance of the watermelon cultivars to Fon isolates is likely affected by the virulence of the pathogen.

Biocontrol Potential of Fungal Endophytes against Fusarium oxysporum f. sp. cucumerinum Causing Wilt in Cucumber

  • Abro, Manzoor Ali;Sun, Xiang;Li, Xingchun;Jatoi, Ghulam Hussain;Guo, Liang-Dong
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.598-608
    • /
    • 2019
  • Endophytic fungi have received much attention as plant growth promoters as well as biological control agents against many plant pathogens. In this study, 30 endophytic fungal species, isolated from various plants in China, were evaluated using in vitro dual culture assay against Fusarium oxysporum f. sp. cucumerinum, causing wilt in cucumber. The results of the present study clearly showed that all the 30 endophytic fungal isolates were highly capable of inhibiting the mycelial colony growth of Fusarium oxysporum f. sp. cucumerinum with inhibition % over 66% as compared to control treatments. Among all of them, 5 isolates were highly effective such as, Penicillium sp., Guignardia mangiferae, Hypocrea sp., Neurospora sp., Eupenicillium javanicum, and Lasiodiplodia theobromae, respectively. The Penicillium sp. and Hypocrea sp. were highly effective as compared to other isolates. From in vitro results 10 best isolates were selected for greenhouse studies. The results of the greenhouse studies showed that among all of them 3 endophytic fungal isolates successfully suppressed wilt severity when co-inoculation with pathogen Fusarium. oxysporum f. sp. cucumerinum. The endophytic fungi also enhanced plant growth parameters of the host plants, the antagonistic fungal isolates increased over all plant height, aerial fresh, and dry weight as compared to control.

Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato

  • Rattana Pengproh;Thanwanit Thanyasiriwat;Kusavadee Sangdee;Juthaporn Saengprajak;Praphat Kawicha;Aphidech Sangdee
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.430-448
    • /
    • 2023
  • Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes.

Breeding of Resistant Cabbage 'CT-171' to Fusarium Wilt (시들음병 저항성 양배추 품종 'CT-171' 육성)

  • Song, Jun-Ho;Kim, Gi-Jun;Kim, Kyoung-Cheol;Han, Tae-Ho
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.129-132
    • /
    • 2014
  • A new resistant cabbage variety 'CT-171' to Fusarium wilt was bred by crossing $A337MSBC_5$ with resistance to the disease and 397-$G_6$ with good density and color. 'CT-171' was selected after combining ability, seed gathering and regional adaptability test in 2008. For breeding of resistant varieties, we investigated the development of Fusarium wilt on cabbage seedlings inoculated with Fusariumoxysporum f. sp. conglutinans by root dipping inoculation method. As a result, 'CT-171' showed higher resistance to Fusarium wilt than 'Asiaball' used as control. The maturity of new variety was 58 days and was faster than control and well suited for autumn cultivation because of cold resistance. The anthocyanin pigment of plant was not revealed. The weight, height and width of head were 1.5 kg, 14 cm and 15 cm, respectively and the core size was 5.7 cm and stable in various cultivation environments. 'CT-171' which showed good agricultural character and resistance to Fusarium wilt filed for variety protect right in Korea Seed & Variety Service on February 2013. The new variety will be appropriate for export and domestic consumption.

Wilt of Perilla Caused by Fusarium spp.

  • Kim, Woo-Sik;Kim, Wan-Gyu;Cho, Weon-Dae;Yu, Seung-Hun
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.293-299
    • /
    • 2002
  • A survey of Fusarium wilt of perilla was conducted in 12 locations in Korea from 1999 to 2001. The disease occurred in 74 out of 187 fields in the 12 locations surveyed, and incidence of the disease reached up to 30% at its maximum in some perilla fields in Seosan and Dangjin. Incidence of the disease in the other locations ranged from 0.2 to 20%. A total of 327 isolates of Fusarium spp. were obtained from stems and roots of the diseased perilla plants. The isolates were identified based on their morphological characteristics. Out of the 327 isolates of Fusarium, 277 isolates from 12 locations were identified as F. oxysporum, 11 isolates from three locations as F. solani,17 isolates from two locations as F. equiseti, 4 isolates from one location as F. avenaceum and 6 isolates from one location as F. subglutinans. The other 12 isolates of Fusarium from four locations were unidentified. Twelve isolates of F. oxysporum and two isolates each of the other Fusarium spp. were tested for their pathogenicity to five cultivars of perilla. Seven isolates of F. oxysporum were strongly pathogenic to some perilla cultivars, but the other five isolates were weakly or not pathogenic. One isolate of F. solani was strongly pathogenic to all the perilla cultivars tested, but another isolate was not pathogenic. All the isolates of F. equiseti, F. avenaceum, and F. Subglutinans tested were not pathogenic to any of the perilla cultivars tested. Symptoms on the perilla plants induced by artificial inoculation with strongly pathogenic isolates of F. oxysporum and F. solani appeared as wilt, stem blight, and root yet, which were similar to those observed in the fields. The isolates which induced symptoms by artificial inoculation were re-isolated from the lesions of the perilla plants inoculated. All the isolates of F. oxysporum tested were not pathogenic to eight other crops inoculated. Results of this study reveal that F. oxysporum is the main pathogen of perilla wilt and that it is host specific to perilla. forma specialis of F. oxysporum causing wilt of perilla is proposed as perillae.

Expression of Rice Chitinase Gene in Genetically Engineered Tomato Confers Enhanced Resistance to Fusarium Wilt and Early Blight

  • Jabeen, Nyla;Chaudhary, Zubeda;Gulfraz, Muhammad;Rashid, Hamid;Mirza, Bushra
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.252-258
    • /
    • 2015
  • This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to nontransgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3.