• Title/Summary/Keyword: Fusarium root rot

Search Result 119, Processing Time 0.028 seconds

Antifungal Activity or Coptis japonica Root-stem extract and Identification of Antifungal Substances (황련추출액의 항균활성과 항균성물질의 동정)

    • Korean Journal of Plant Resources
    • /
    • v.12 no.4
    • /
    • pp.260-268
    • /
    • 1999
  • Crude extract of Coptis japonica root-stem was evaluated for antifungal activity against Phytophthora capsici, Fusarium oxysporum, Colletotrichum dematium, Colletotrichum truncatum, Botrytis cinerea, Botryosphaeria dothidea and Alternaria porri, and antifungal active compound from the extract was identified. In addition, the usefulness of the extract for some plants disease control was investigated. Crude extract of C. japonica root-stem exhibited antifungal activity against P. capsici, F. oxysporum, C. dematium, B. cinerea, B. dothidea and A. porri. Antifungal activity of the substance isolated from C. japonica root-stem was similar to a standard chemical berberine-Cl. Red-pepper fruit rot, sesame stem rot and welsh-onion alternaria leaf spot were effectively controlled by the crude extract of C. japonica root-stem. Phytotoxicity was not observed in the red-pepper and welsh-onion leaves and red-pepper and strawberry fruits with exogenous foliage application of the crude extract. Seeds germination and radicle growth of red-pepper and sesame were inhibited by the crude extract of C. japonica root-stem. 4.24g of yellowish compound per 100g of C. japonica root-stem was obtained. The compound was identified as berberine-Cl by HPLC.

  • PDF

Effect of crude ginseng saponin and raw ginseng juice on the growth of ginseng root rot organisms, Fusarium solani and Erwinia carotovora (인삼 조 Saponin과 조즙액이 인삼근부병균 Fusarium solani와 Erwinia carotovora의 생육에 미치는 영향)

  • Park Chang-Seuk;Ohh Seung-Hwan
    • Korean journal of applied entomology
    • /
    • v.20 no.1 s.46
    • /
    • pp.1-5
    • /
    • 1981
  • Effect of crude saponin and raw ginseng juice on root rot pathogens such as Fusarium solani and Erwinia carotovora for there growth or spore germination was investigated. Macroconidial germination of F. solani was decreased as the incrasee of the crude saponin concentration. especially, percentage of the germination was remarkably reduced when the concentration was more than 500ppm. The spore production of F. solani was also reduced as the increase of the crude saponin concentration and this phenomenon was particularly profound on a solid medium. Mycelial growth was decreased when the crude saponin was added, while the effect of the concentration was not apparently significant. The higher concentration of raw ginseng juice is, the more the growth of F. solani. Growth of E. carotovora was enhanced by crude ginseng saponin and raw ginseng juice. The crude ginseng saponin stimulated the growth of E. carotovora as the increase of the concentration, while more growth of the bacteria obtained at $1\%$ raw ginseng juice added.

  • PDF

Antagonistic activity of Streptomyces apecies against Fusarium solani causing ginseng root rot (인삼뿌리 썩음 병균 Fusarium solane에 대한 Streptomyces species의 길한작용)

  • 정영륜;오승환;정후섭
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.56-62
    • /
    • 1989
  • Antagonistic effects of Streptomyces species aganinst Fusarium solani causing ginseng root rot were investigated in terms of chitinase activity and growth inhibition in vitro. Among 131 isolates of streptomycetes obtained from ginseng cultivating soil, 9 isolates producing large clear zone around the colony on a chitin agar medium were selected for further study. All 9 isolates produced chitinase in a range from 0.10 to 0.38 U lysing cells of F. solani and inhibited germination of the conidia. In the ten-fold condentrated culture filtrate of S. alboniger ST59 and S. roseolilacinus ST129, the number of conidia of F. solane was reduced to about 20% of original count within 14 days. When S. alboniger ST59 and F. solani were grown simultaneously in the mineral saly medium, chitinase activity increased with incubation period, whereas mycelial volume of F. solani decreased. In a chitin added mineral salt medium, chitinase activity increased during the first four days and maintained steady level until the 8th day, and increased thereafter. S. alboniger ST59 lysed mycelia, conidia and even chlamydospores of F. solani. It is probable that the antagonistic activity of this streptomycete against F. solani is the lysis of fungal cell wall by streptomycete producing chitinase affected by antifungal substances.

  • PDF

Effects of Irrigation and Ginseng Root Residue on Root Rot Disease of 2-Years-Old Ginseng and Soil Microbial Community in the Continuous Cropping Soil of Ginseng (인삼 연작토양에서 관수 및 인삼뿌리 잔사물이 토양 미생물상 및 뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Seo, Moon Won;Park, Kyung Hoon;Jang, In Bok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.345-353
    • /
    • 2018
  • Background: Some phenolics detected in the soil may inhibit the seed germination and seedling growth of ginseng (Panax ginseng). This study investigated the effect of irrigation and ginseng root residue addition on the soil microbial community and root rot disease in 2-year-old ginseng. Methods and Results: Each $20{\ell}$ pot was filled with soil infected with ginseng root rot pathogens, and irrigated daily with $2{\ell}$ of water for one month. After the irrigation treatment, ginseng fine root powder was mixed with the irrigated soil at a rate of 20 g per pot. In descending order, ${NO_3}^-$, electric conductivity (EC), exchangeable Na (Ex. Na) and K (Ex. K) decreased due to irrigation. In descending order, ${NO_3}^-$, EC, Ex. K, and available $P_2O_5$ increased with the additon of ginseng powder to the soil. The abundance of Trichoderma crassum decreased with irrigation, but increased again with the incorporation of ginseng powder. The abundance of Haematonectria haematococca increased with irrigation, but decreased with the incorporation of ginseng powder. The abundance of Cylindrocarpon spp. and Fusarium spp., which cause ginseng root rot, increased with the incorporation of ginseng powder. The abundance of Arthrobacter oryzae and Streptomyces lavendulae increased with irrigation. The abundance of Streptomyces lavendulae decreased, and that of Arthrobacter spp. increased, with the incorporation of ginseng powder. Aerial growth of ginseng was promoted by irrigation, and ginseng root rot increased with the incorporation of ginseng powder. Conclusions: Ginseng root residues in the soil affected soil nutrients and microorganisms, and promoted ginseng root rot, but did not affect the aerial growth of ginseng.

Efficacy of Pesticides and Growth Hormones against Root Disease Complex of Mulberry (Morus alba L.)

  • Naik, Vorkady Nishitha;Sharma, Dinesh Dutta
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.2
    • /
    • pp.101-106
    • /
    • 2007
  • During mulberry cultivation, root disease complex caused by the association of root knot nematode (Meloidogyne incognita) with root rot pathogens like Fusarium solani and Botryodiplodia theobromae poses serious loss in leaf production. Therefore, an attempt was made to assess the efficacy of eight pesticides (Metayalaxyl+Mancozeb, Thiophanate methyl, Mancozeb, Bitertanol, Phenomiphos, Phorate, Thionazin & Carbofuran) and two growth hormones (Salicylic acid and Indole 3 acetic acid) at 0.1 and 0.2% concentrations under in vitro conditions against nematode (hatching of eggs and mortality of larvae) and root rot pathogens (poisoned food technique) for short listing the treatments to develop an IDM strategy. Results revealed that among the pesticides and growth hormones, Carbofuran followed by Salicylic acid were found to be effective at 0.2% concentration against both nematode and pathogenic fungi. Both the chemicals inhibited the hatching of nematode eggs by 83.5-78.9% and 80-76% larval mortality over the control and reduced the mycelial growth of both the pathogenic fungi to an extent of 75.5-77.8%. Though Mancozeb inhibited both the pathogenic fungi strongly (77-80%), it did not show any effectiveness against nematode. The rest of the chemicals were found either moderately or poorly effective in reducing the growth of pathogenic fungi, hatching of nematode eggs and enhancing the mortality of larvae. The two effective chemicals viz., Carbofuran and Salicylic acid, which rated as strong inhibitors against both nematode and pathogenic fungi, can be exploited in developing an IDM package as one of the component for better management of root disease complex in mulberry.

Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease

  • Zheng, You-Kun;Miao, Cui-Ping;Chen, Hua-Hong;Huang, Fang-Fang;Xia, Yu-Mei;Chen, You-Wei;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.353-360
    • /
    • 2017
  • Background: Endophytic fungi play an important role in balancing the ecosystem and boosting host growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax notoginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root-rot of P. notoginseng. Methods: A culture-dependent technique, combining morphological and molecular methods, was used to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phytopathogens of P. notoginseng. Results: A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng, and 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates were challenged by the root-rot pathogens Alternaria panax, Fusarium oxysporum, Fusarium solani, Phoma herbarum, and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at least one of the pathogens tested. Conclusion: Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.

Inhibition Effect on Root Rot Disease of Panax ginseng by Crop Cultivation in Soil Occurring Replant Failure (윤작물 재배에 의한 인삼 뿌리썩음병 발생 억제 효과)

  • Lee, Sung Woo;Lee, Seung Ho;Park, Kyung Hoon;Lan, Jin Mei;Jang, In Bok;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.3
    • /
    • pp.223-230
    • /
    • 2015
  • To study the effect of crop rotation on the control of ginseng root rot, growth characteristics and root rot ratio of 2-year-old ginseng was investigated after the crops of 18 species were cultured for one year in soil contaminated by the pathogen of root rot. Fusarium solani and Cylindrocarpon destructans were detected by 53.2% and 37.7%, respectively, from infected root of 4-year-old ginseng cultivated in soil occurring the injury by continuous cropping. Content of $NO_3$, Na, and $P_2O_5$ were distinctly changed, while content of pH, Ca, and Mg were slightly changed when whole plant of crops cultured for one year were buried in the ground. All of EC, $NO_3$, $P_2O_5$, and K were distinctly increased in soil cultured sudangrass, peanut, soybean, sunnhemp, and pepper. All of EC, $NO_3$, $P_2O_5$, and K among inorganic component showed negative effect on the growth of ginseng when they were excessively applied on soil. The growth of ginseng was promoted in soil cultivated perilla, sweet potato, sudangrass, and welsh onion, while suppressed in Hwanggi (Astragalus mongholicus), Deodeok (Codonopsis lanceolata) Doraji (Platycodon grandiflorum), Gamcho (Glycyrrhiza uralensis), Soybean. All of chicory, lettuce, radish, sunnhemp, and welsh onion had effective on the inhibition of ginseng root rot, while legume such as soybean, Hwanggi, Gamcho, peanut promoted the incidence of root rot. Though there were no significant correlation, $NO_3$ showed positive correlation, and Na showed negative correlation with the incidence of root rot.

Biological Efficacy of Endophytic Bacillus velezensis CH-15 from Ginseng against Ginseng Root Rot Pathogens (인삼내생균 Bacillus velezensis CH-15의 인삼뿌리썩음병 방제 효과)

  • Kim, Dohyun;Li, Taiying;Lee, Jungkwan;Lee, Seung-Ho
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • Ginseng is an important medicinal plant cultivated in East Asia for thousands of years. It is typically cultivated in the same field for 4 to 6 years and is exposed to a variety of pathogens. Among them, ginseng root rot is the main reason that leads to the most severe losses. In this study, endophytic bacteria were isolated from healthy ginseng, and endophytes with antagonistic effect against ginseng root rot pathogens were screened out. Among the 17 strains, three carried antagonistic effect, and were resistant to radicicol that is a mycotoxin produced by ginseng root rot pathogens. Finally, Bacillus velezensis CH-15 was selected due to excellent antagonistic effect and radicicol resistance. When CH-15 was inoculated on ginseng root, it not only inhibited the mycelial growth of the pathogen, but also inhibited the progression of disease. CH-15 also carried biosynthetic genes for bacillomycin D, iturin A, bacilysin, and surfactin. In addition, CH-15 culture filtrate significantly inhibited the growth and conidial germination of pathogens. This study shows that endophytic bacterium CH-15 had antagonistic effect on ginseng root rot pathogens and inhibited the progression of ginseng root rot. We expected that this strain can be a microbial agent to suppress ginseng root rot.

Effects of Amendments on Ginseng Root Rot Caused by Fusarium solani Population Changes of the Microorganisms in Soil (토양(土壤)개량(改良)이 Fusarium solani 에 의한 인삼근부병과(人蔘根腐病)과 미생물(微生物) 변동(變動)에 미치는 효과(效果))

  • Son, Suh-Gyu;Shin, Hyun-Sung;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.13 no.1
    • /
    • pp.41-47
    • /
    • 1985
  • Eighteen plant residues were added to soil and the amended soil was inoculated with chlamydospores (5,000 cells/g soil) of Fusarium solani causing root rot of ginseng in soil to test the effects of amendment using pea (Pisium sativa L.) as an index plant. Distributional conditions of microogranisms in soil were compared with each other before and after dealing with soil amendment by plant debries. Infection rate by index plant's infectivity showed a higher degree in the treatment of wheat crushed than in control group, and followed by stalk of sweet potato, chinese cabbage, ginseng leaves and soybean pod. On the other hand, the de­creasing order of infection rate was root of garlic, welsh onion, cabbage leaf and stalk, green onion stalk, wheat straw and barley straw. In comparison with control group, the propagules of fungi increased in the treatment of ginseng leaves, soybean ground, wheat crushed, maize stalk, and chinese cabbage, but decreased in the root of garlic, cabbage, and barley straw. Population of total bacteria increased in the treatment of soybean ground, chinese cabbage, radish stalk, welsh onion, and wheat crushed, but decreased in barley straw, tobaco root, ginseng stalk, and wheat straw. The numbers of actinomycetes increased only in the treatment of soybean ground in a comparison with control and also decreased in the garlic stalk and tobaco root. The propagules of Fusarium spp increased in the treatment of chinese cabbage, welsh onion, radish stalk, wheat crushed, and sweet potato stalk, wheat crushed, and sweet potato stalk, but decreased in the treat­ment of wheat straw, ginseng leaves, and cabbage than control.

  • PDF

Diagnosis of Cylindrocarpon destructans Using Enzyme-Linked Immunosorbent Assay

  • Li, Taiying;Ji, Sungyeon;Jung, Boknam;Kim, Bo Yeon;Lee, Kwang Sik;Seo, Mun Won;Lee, Sung Woo;Lee, Jungkwan;Lee, Seung-Ho
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.131-135
    • /
    • 2019
  • Cylindrocarpon destructans causes ginseng root rot and produces radicicol that has an antifungal effect. In this study, we developed a method to detect this fungus using enzyme-linked immunosorbent assay (ELISA). Secreted proteins of C. destructans were used as antigens to obtain C. destructans-specific IgG from mouse. Out of 318 monoclonal antibodies generated from mouse, two antibodies (Cd7-2-2 and Cd7-2-10) showed highest specificity and sensitivity. Indirect ELISA using both antigens successfully detected C. destructans in soils, but direct ELISA using IgG conjugated with horseradish peroxidase failed to detect antigens in soils. The indirect ELISA developed here can efficiently detect the fungus and help manage ginseng root rot disease in fields.