• Title/Summary/Keyword: Fusarium oxysporum f. sp. niveum

Search Result 14, Processing Time 0.02 seconds

Chromosomal studies on the varieties and Formae specials of Fusarium oxysporum.(I) (Fusarium oxysporum의 변종 및 품종의 염색체에 관한 연구( I ))

  • Min, Byung-Re
    • The Korean Journal of Mycology
    • /
    • v.16 no.3
    • /
    • pp.157-161
    • /
    • 1988
  • The vegetative nuclear divisions in hyphae and chromosome numbers were studied with the aid of Giemsa-HCl techniques from 10 strains of Fusarium oxysporum. The entire nuclear division process occurred within an intact nuclear envelope like other fungus. The results confirmed that 2 strains(F. oxysporum S Hongchun D2, F. oxysporum S Jinyang 4) were n=4; 3 strains(F. oxysporum f. sp. lini KFCC 32585, F. oxysporum f. sp. melongenae KFCC 34743 and F. oxysporum f. sp. raphani) n=5; 2 strains(F. oxysporum f. sp. vasinfectum, and F. oxysporum f. sp. mori KFCC 34742) n=6; 3 strains(F. oxysporum f. sp. cucumerium, F. oxysporum f. sp.niveum, and F. oxysporum f. sp. pisi) n=7.

  • PDF

Induced Change in DNA Methylation of Fusarium oxysporum f. sp. niveum due to Successive Transfer

  • Kim, Dae-Hyuk
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.216-221
    • /
    • 1997
  • Changes in pathogenicity of old and successively-cultured isolates of Fusarium oxysporum f. sp. niveum have been observed and the concept that such cultures will become attenuated is generally accepted. However, the genetic basis for this phenomenon has not been studied. In an effort to identify a DNA marker closely linked to variations, DNA methylation was investigated both before and after the successive transfers of F. o. f. sp. niveum isolates on artificial media. A sector of mycelium in F. o. f. sp. niveum race 2 isolate (TXXID) which showed variation in pigmentation and colonial morphology occurred after 18 successive weekly transfers on potato dextrose agar (PDA). The sector characteristics were stable and did not change after more successive transfers. It was shown that DNA methylation preexists in ribosomal RNA gene (rDNA) of F. o. f. sp. niveum and that additional changes in DNA methylation occurred during successive culturing.

  • PDF

Plant Growth-Promoting Effects of Antagonistic Bacillus sp. YJ-3 against Fusarium Wilt of Watermelon-Rootstock Gourd (수박 만할병균에 길항하는 Bacillus sp. YJ-3에 의한 대목용 참박 생육촉진효과)

  • Kim, Jin-Ho;Choi, Yong-Hwa;Joo, Gil-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 2001
  • Twelve antagonistic strains against Fusarium wilt of watermelon-rootstock gourd were selected from 54 bacterial isolates which were isolated from the rhizosphere of crop plants growing in various locations. They showed strong inhibitory effects on growth of Fusarium osysporum f. sp. niveum, the causal agent of watermelon-rootstock gourd Fusarium wilt. Among these antagonists, the isolate YJ-3 was the most pronounced in growth-promoting ability for watermelon-rootstock gourd. The growth of watermelon-rootstock gourd in bed soil inoculated with YJ-3 was better by 46 and 13% than those in commercial bed soil alone and in bed soil inoculated with commercial microbial inoculant, respectively. The antagonistic plant growth-promoting rhizobacterium, strain No. YJ-3, was identified as Bacillus sp. on MIDI system. Furthermore, Bacillus sp. YJ-3 showed antifungal activity on growth against Alternaria cucumerina, Botrytis cinerea, Colletotrichum orbiculare, Didymella bryoniae, Rhizoctonia solani and Fusarium oxysporum.

  • PDF

Detection and Quantification of Fusarium oxysporum f. sp. niveum Race 1 in Plants and Soil by Real-time PCR

  • Zhong, Xin;Yang, Yang;Zhao, Jing;Gong, Binbin;Li, Jingrui;Wu, Xiaolei;Gao, Hongbo;Lu, Guiyun
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.229-238
    • /
    • 2022
  • Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) is the most serious soil-borne disease in the world and has become the main limiting factor of watermelon production. Reliable and quick detection and quantification of Fon are essential in the early stages of infection for control of watermelon Fusarium wilt. Traditional detection and identification tests are laborious and cannot efficiently quantify Fon isolates. In this work, a real-time polymerase chain reaction (PCR) assay has been described to accurately identify and quantify Fon in watermelon plants and soil. The FONRT-18 specific primer set which was designed based on identified specific sequence amplified a specific 172 bp band from Fon and no amplification from the other formae speciales of Fusarium oxysporum tested. The detection limits with primers were 1.26 pg/µl genomic DNA of Fon, 0.2 pg/ng total plant DNA in inoculated plant, and 50 conidia/g soil. The PCR assay could also evaluate the relationships between the disease index and Fon DNA quantity in watermelon plants and soil. The assay was further used to estimate the Fon content in soil after disinfection with CaCN2. The real-time PCR method is rapid, accurate and reliable for monitoring and quantification analysis of Fon in watermelon plants and soil. It can be applied to the study of disease diagnosis, plant-pathogen interactions, and effective management.

Variation of the Intergenic Spacer (IGS) Region of Ribosomal DNA among Fusarium oxysporum formae Speciales

  • Kim, Hyun-Jung;Chol, Yong-Keel;Min, Byung-Re
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.265-272
    • /
    • 2001
  • Variation within the intergenic spacer(IGS) of the ribosomal DNA gene for twenty-two strains of E. oxysporum and its formae speciales was examined by PCR, couped with RELP analysis. The length of the amplified IGS region was about 2.6 kb in all strains except F.oxysporum f. sp. cucumer-inum from Korea and F. oxysporum f. sp. niveum. Those two strains were 2.5 kb long. Restriction digestion of IGS-RELP regions by Eco RI, NruI, HincII, SAlI, SmaI, BalIi, HindIII, XhoI and KpnI gave rise to nine IGS hapoltypes among all strains. Cluster analysis based on the presence of absence of comigrating restriction reagments show the two groups based on 44% genetic similarity. These results demonstrated that analysis of IGS showed some difference within and between F. oxysporum formae speciales.

  • PDF

Development of a Simple and Effective Bioassay Method to Evaluate Resistance of Watermelon Plants to Fusarium oxysporum f. sp. niveum (수박 덩굴쪼김병에 대한 간편 저항성 검정법 확립)

  • Jo, Eun Ju;Choi, Yong Ho;Jang, Kyoung Soo;Kim, Hun;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.23 no.2
    • /
    • pp.168-176
    • /
    • 2017
  • Root-dipping inoculation method has been widely used to determine the resistance of watermelon to Fusarium oxysporum f. sp. niveum causing Fusarium wilt. Although this method leads to the precise results of plant disease responses, more rapid and efficient assay methods have been still required because the root-dipping inoculation method is labor-intensive and time-consuming. In this study, we established a simple and effective bioassay method based on the comparison of various inoculation methods and growth conditions. To develop the system, the occurrence of Fusarium wilt on four resistant and susceptible cultivars was investigated by four different inoculation methods, root-dipping, scalpel, tip and soil-drenching methods. Of these inoculation methods, scalpel method resulted in clear plant disease resistance responses with the simplicity. With the use of scalpel method, we also explored the disease development of the cultivars depending on inoculum concentration, growth stage of seedlings, and incubation temperature after inoculation. Furthermore, we found that the resistance degrees of 23 cultivars derived by scalpel inoculation method were similar to the results by root-dipping method established previously.

Isolation and Antifungar Activity of Bacillus ehimensis YJ-37 as Antagonistic against Vegetables Damping-off Fungi (채소류 모잘록병균에 길항하는 Bacillus ehimensis YJ-37의 선발과 항진균성)

  • 주길재;김진호;강상재
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.200-207
    • /
    • 2002
  • This study was carried out to isolate of antagonistic bacterium against Pythium ultimum and Rhizoctonia solani AG-4, causal pathogens of vegetables damping-off. Total of 600 strains were isolated from soil and plait roots. The isolates were screened for antagonism against Pythium ultimum and Rhizoctonia solani AG-4. One strain, named YJ-37, was sellected for detained study among those microoganisms screened. It was identified as Bacillus ehimensis based on morphological and physiological characterisitics according to the Bergey's mannual of systematic bacteriology, Sherlock system of Microbial ID Inc. and 16S rDNA sequences methods. Furthermore Bacillus ehimensis YJ-37 showed antifungal activities against Alternaria altrata, Collectotrichum gloeosporioides, Didymella bryoniae, Fusarium moniliforme, Fusarium oxysporum, F. oxysporum cucumerinum, F. oxysporum niveum, Gloeosporium sp., Glomerella sp., G. cingulata, G. lagenaria, Penicillium digitatum, P. italicum, Phytophthora capsici, Sclerotinia sclerotiorum, and Stemprhylium solani.

Resistance Characteristics of Watermelon Cultivars to Fusarium oxysporum f. sp. niveum (수박 품종들의 덩굴쪼김병균에 대한 저항성 특성)

  • Soo Min Lee;Eun Ju Jo;Hun Kim;Gyung Ja Choi
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.258-267
    • /
    • 2023
  • Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (Fon) is a serious disease in watermelon cultivation. Most of commercialized watermelon cultivars to Fusarium wilt are susceptible in Korea. Fon isolates were divided into four races (races 0, 1, 2, and 3), based on pathogenicity in four watermelon differentials including 'Sugar baby', 'Charleston gray', 'Calhoun gray' and 'PI-296341-FR'. We obtained 7 isolates of Fon and tested to determine race of the fungal strains. Fon KACC 40902 and Fon HA were race 0 and Fon NW1, Fon NW2, Fon CW and Fon KACC 40901 were race 1. And Fon KACC 40905 was race 2, but race 3 isolate of Fon was not founded. We also tested virulence of seven Fon isolates on three-susceptible cultivars of watermelon. The isolates showed different virulence on the cultivars. In addition, to study the resistance characteristics of watermelon to Fon, we selected three moderately or highly resistant cultivars of watermelon and occurrence of Fusarium wilt in seedlings of the cultivars by seven Fon isolates was investigated. Among them, 'Calhoun gray' is highly resistant to six Fon isolates except Fon KACC 40905. On the other two cultivars, disease severity of Fusarium wilt caused by each isolate was positively correlated with the virulence of the Fon isolates. The results suggest that resistance of the watermelon cultivars to Fon isolates is likely affected by the virulence of the pathogen.

Antifungal activity of Streptomyces costaricanus HR391 against some plant-pathogenic fungi (여러 식물병원성 진균을 억제하는 Streptomyces costaricanus HR391의 항진균능)

  • Kim, Hae-Ryoung;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.437-443
    • /
    • 2016
  • In this study Streptomyces strains were isolated from soils and their antifungal activities and involved mechanisms were investigated. Among over 400 isolates of actinomycetes, Streptomyces costaricanus HR391 was selected as a potential antagonist to control several plant-pathogenic fungi. S. costaricanus HR391 inhibited mycelial growth of Fusarium oxysporum f. sp. raphani, F. oxysporum f. sp. niveum, F. oxysporum f. sp. lycopersici, and Rhizoctonia solani by 26.5, 26.2, 21.2, and 23.8%, respectively compared to those of uninoculated control after 7-day incubation on PDB medium. S. costaricanus HR391 produced $89{\mu}M$ of siderphore, and showed fungal cell wall-degrading activity including $0.46{\mu}mol/min/mg$ of chitinase and $0.83{\mu}mol/min/mg$ of ${\beta}$-1,3 glucanase. S. costaricanus HR391 secreted 87.49 mg/L of rhamnolipid, and produced 9.49 mg/L and 4.3 mM of lipopeptide, iturin A and surfactin, respectively, all they are membrane-disrupting biosurfactants. It also produced antimicrobial peptide and antibiotics phenazine. In addition to antifungal substances, S. costaricanus HR391 secreted plant growth-promoting phytohormones, zeatin, gibberellins and IAA. These results suggest that S. costaricanus HR391 may be utilized as an environment-friendly biocontrol agent against some important pathogenic fungi.

Development of an Efficient Method of Screening for Watermelon Plants Resistant to Fusarium oxysporum f. sp. niveum (수박 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발)

  • Jo, Eun Ju;Lee, Ji Hyun;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.409-419
    • /
    • 2015
  • This study was conducted to establish an efficient screening method for watermelon plants resistant to Fusarium wilt (FW), which is caused by Fusarium oxysporum f. sp. niveum (Fon). An HA isolate was prepared from a wilted watermelon plant in Haman-gun and identified as F. oxysporum f. sp. niveum based on morphological characteristics, molecular analyses of ITS (internal transcribed spacer) and TEF (translation elongation factor $1{\alpha}$) sequences, and host specificity on cucurbits including watermelon, melon, oriental melon, and cucumber. The assay for disease response of watermelon differentials indicated that the HA isolate was race 0. Among seven liquid media tested, the highest amount of Fon spores was produced from V8-juice broth, which was selected as a medium for mass production of Fon. The disease assay for 21 watermelon and 11 watermelon-rootstock cultivars demonstrated that 20 watermelon cultivars except for 'Soknoranggul' were susceptible; 'Soknoranggul' was moderately resistant. All the tested rootstock cultivars were highly resistant to the HA isolate. The evaluation of disease development depending on various conditions suggested that an efficient screening method for FW resistance in watermelon plants is to dip the roots of 10-day-old seedlings in spore suspension of $1.0{\times}10^5-1.0{\times}10^6conidia{\cdot}mL^{-1}$ for 30 min., to transplant the seedlings to plastic pots with a fertilized soil, and then to cultivate the plants at $25^{\circ}C$ for 3 weeks.