Browse > Article
http://dx.doi.org/10.5423/RPD.2017.23.2.168

Development of a Simple and Effective Bioassay Method to Evaluate Resistance of Watermelon Plants to Fusarium oxysporum f. sp. niveum  

Jo, Eun Ju (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Choi, Yong Ho (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Jang, Kyoung Soo (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Kim, Hun (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Choi, Gyung Ja (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Publication Information
Research in Plant Disease / v.23, no.2, 2017 , pp. 168-176 More about this Journal
Abstract
Root-dipping inoculation method has been widely used to determine the resistance of watermelon to Fusarium oxysporum f. sp. niveum causing Fusarium wilt. Although this method leads to the precise results of plant disease responses, more rapid and efficient assay methods have been still required because the root-dipping inoculation method is labor-intensive and time-consuming. In this study, we established a simple and effective bioassay method based on the comparison of various inoculation methods and growth conditions. To develop the system, the occurrence of Fusarium wilt on four resistant and susceptible cultivars was investigated by four different inoculation methods, root-dipping, scalpel, tip and soil-drenching methods. Of these inoculation methods, scalpel method resulted in clear plant disease resistance responses with the simplicity. With the use of scalpel method, we also explored the disease development of the cultivars depending on inoculum concentration, growth stage of seedlings, and incubation temperature after inoculation. Furthermore, we found that the resistance degrees of 23 cultivars derived by scalpel inoculation method were similar to the results by root-dipping method established previously.
Keywords
Breeding; Cucurbit; Disease resistance; Fusarium wilt; Inoculation method;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Martyn, R. D. and McLaughlin, R. J. 1983. Effects of inoculum concentration on the apparent resistance of watermelons to Fusarium oxysporum f. sp. niveum. Plant Dis. 67: 493-495.   DOI
2 Martyn, R. D. and Netzer, D. 1991. Resistance to races 0, 1, and 2 of Fusarium wilt of watermelon in Citrullus sp. PI-296341-FR. Hort-Science 26: 429-432.
3 Minton, N. A. and Minton, E. B. 1966. Effect of root knot and sting nematodes on expression of Fusarium wilt of cotton in three soils. Phytopathology 56: 319-322.
4 Netzer, D. 1976. Physiological races and soil population level of Fusarium wilt of watermelon. Phytoparasitica 4: 131-136.   DOI
5 Netzer, D. and Dishon, I. 1973. Screening for resistance and physiological specialization of Fusarium oxysporum in watermelon and muskmelon. In: 2nd International Congress of Plant Pathology, Abstract 941. University of Minnesota, Minneapolis, MN, USA.
6 Newhall, A. G. 1958. The incidence of Panama disease of banana in the presence of the root-knot and burrowing nematodes (Meloidogyne incognita and Radopholus similis). Plant Dis. Report. 42: 853-856.
7 Risser, G., Banihashemi, Z. and Davis, D. W. 1976. A proposed nomenclature of Fusarium oxysporum f. sp. melonis races and resistance genes in Cucumis melo. Phytopathology 66: 1105-1106.   DOI
8 Martyn, R. D. 1996. Fusarium wilts. In: Compendium of Cucurbit Diseases, eds. by T. A. Zitter, D. L. Hopkins and C. E. Thomas, pp. 13-14. APS Press, St. Paul, MN, USA.
9 Sequeira, L., Steeves, T. A., Steeves, M. W. and Riedhart, J. M. 1958. Role of root injury in Panama disease infections. Nature 182: 309-311.   DOI
10 Zhou, X. G., Everts, K. L. and Bruton, B. D. 2010. Race 3, a new and highly virulent race of Fusarium oxysporum f. sp. niveum causing Fusarium wilt in watermelon. Plant Dis. 94: 92-98.   DOI
11 Choo, H. Y., Lee, S. M., Kim, H. K. and Choi, Y. E. 1990. Influence of Meloidogyne incognita infection on the development of cucumber wilt by Fusarium oxysporum f. sp. cucumerinum. Korean J. Plant Pathol. 6: 412-416. (In Korean)
12 Abawi, G. S. and Barker, K. R. 1984. Effects of cultivar, soil temperature, and population levels of Meloidogyne incognita on root necrosis and Fusarium wilt of tomatoes. Phytopathology 74: 433-438.   DOI
13 Agrios, G. N. 2005. Vascular wilts caused by ascomycetes and deuteromycetes (mitosporic fungi). In: Plant Pathology, ed. by G. N. Agrios, pp. 522-534. Elsevier Academic Press, Burlington, MA, USA.
14 Bergeson, G. B. 1975. The effect of Meloidogyne incognita on the resistance of four muskmelon varieties to Fusarium wilt. Plant Dis. Rep. 59: 410-413.
15 Cirulli, M. 1972. Variation of pathogenicity in Fusarium oxysporum f. sp. niveum and resistance in watermelon cultivars. In: Actas III Congr. Uniao Fitopatol. Mediterr., pp. 491-500. Oeiras, Portugal.
16 Crall, J. M. 1963. Physiologic specialization in Fusarium oxysporum f. sp. niveum. Phytopathology 53: 873.
17 Jo, E. J., Lee, J. H., Choi, Y. H., Kim, J. C. and Choi, G. J. 2015. Development of an efficient method of screening for watermelon plants resistant to Fusarium oxysporum f. sp. niveum. Korean J. Hortic. Sci. Technol. 33: 409-419. (In Korean)   DOI
18 Jo, S. J., Shim, S. A., Jang, K. S, Choi, Y. H., Kim, J. C. and Choi, G. J. 2014. Resistance of chili pepper to isolates of Phytophthora capsici. Korean J. Hortic. Sci. Technol. 32: 66-76. (In Korean)   DOI
19 [KSPP] Korean Society of Plant Pathology. 2009. Watermelon. In: List of Plant Disease in Korea, 5th ed., eds. by W. G. Kim and H. M. Koo, pp. 119-123. KSPP, Suwon, Korea.
20 Latin, R. X. and Snell, S. J. 1986. Comparison of methods for inoculation of muskmelon with Fusarium oxysporum f. sp. melonis. Plant Dis. 70: 297-300.   DOI
21 Lee, D. H. 1969. Studies on the control of Fusarium wilt of the cucurbitaceous plants: (1) investigation on the pathogenicity of Fusarium isolates from the wilted cucurbitaceous plants. Korean J. Plant Prot. 7: 69-75. (In Korean)
22 Lee, J. H., Kim, J. C., Jang, K. S., Choi, Y. H. and Choi, G. J. 2014. Efficient screening method for resistance of cucumber cultivars to Fusarium oxysporum f. sp. cucumerinum. Res. Plant Dis. 20: 245-252.   DOI
23 Lee, S. G. and Lee, W. H. 1994. Control of Fusarium wilt of watermelon with the root-stock grafting of Sicyos angulatus L. Korean J. Plant Pathol. 10: 240-244. (In Korean)
24 Lee, W. J., Jang, K. S., Choi, Y. H., Kim, H. T., Kim, J. C. and Choi, G. J. 2015a. Development of an efficient simple mass-screening method for resistant melon to Fusarium oxysporum f. sp. melonis. Res. Plant Dis. 21: 201-207. (In Korean)   DOI
25 Lee, W. J., Lee, J. H., Jang, K. S., Choi, Y. H., Kim, H. T. and Choi, G. J. 2015b. Development of efficient screening methods for melon plants resistant to Fusarium oxysporum f. sp. melonis. Korean J. Hortic. Sci. Technol. 33: 70-82. (In Korean)   DOI
26 Mai, W. F. and Abawi, G. S. 1987. Interactions among root-knot nematodes and Fusarium wilt fungi on host plants. Annu. Rev. Phytopathol. 25: 317-338.   DOI
27 Martin, W. J., Newsom, L. D. and Jones, J. E. 1956. Relationship of nematodes to the development of Fusarium wilt in cotton. Phytopathology 46: 285-289.
28 Martyn, R. D. 1987. Fusarium oxysporum f. sp. niveum race 2: a highly aggressive race new to the United States. Plant Dis. 71: 233-236.   DOI