DOI QR코드

DOI QR Code

Detection and Quantification of Fusarium oxysporum f. sp. niveum Race 1 in Plants and Soil by Real-time PCR

  • Zhong, Xin (College of Horticulture, Hebei Agricultural University) ;
  • Yang, Yang (College of Horticulture, Hebei Agricultural University) ;
  • Zhao, Jing (College of Horticulture, Hebei Agricultural University) ;
  • Gong, Binbin (College of Horticulture, Hebei Agricultural University) ;
  • Li, Jingrui (College of Horticulture, Hebei Agricultural University) ;
  • Wu, Xiaolei (College of Horticulture, Hebei Agricultural University) ;
  • Gao, Hongbo (College of Horticulture, Hebei Agricultural University) ;
  • Lu, Guiyun (College of Horticulture, Hebei Agricultural University)
  • Received : 2022.03.16
  • Accepted : 2022.04.28
  • Published : 2022.06.01

Abstract

Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) is the most serious soil-borne disease in the world and has become the main limiting factor of watermelon production. Reliable and quick detection and quantification of Fon are essential in the early stages of infection for control of watermelon Fusarium wilt. Traditional detection and identification tests are laborious and cannot efficiently quantify Fon isolates. In this work, a real-time polymerase chain reaction (PCR) assay has been described to accurately identify and quantify Fon in watermelon plants and soil. The FONRT-18 specific primer set which was designed based on identified specific sequence amplified a specific 172 bp band from Fon and no amplification from the other formae speciales of Fusarium oxysporum tested. The detection limits with primers were 1.26 pg/µl genomic DNA of Fon, 0.2 pg/ng total plant DNA in inoculated plant, and 50 conidia/g soil. The PCR assay could also evaluate the relationships between the disease index and Fon DNA quantity in watermelon plants and soil. The assay was further used to estimate the Fon content in soil after disinfection with CaCN2. The real-time PCR method is rapid, accurate and reliable for monitoring and quantification analysis of Fon in watermelon plants and soil. It can be applied to the study of disease diagnosis, plant-pathogen interactions, and effective management.

Keywords

Acknowledgement

This research was performed by the Collaborative Innovation Center of Vegetable Industry in Hebei, which was financially supported by the National Nature Science Foundation of China (No. 31872132), The Key Research Projects of Hebei (No. 21626901D), Hebei Facility Vegetables Innovation Team of Modern Agro-industry Technology (No. HBCT2021030213).

References

  1. Amaradasa, B. S., Beckham, K., Dufault, N., Sanchez, T., Ertek, T. S., Iriarte, F., Paret, M. and Ji, P. 2018. First report of Fusarium oxysporum f. sp. niveum Race 3 causing wilt of watermelon in Florida, U.S.A. Plant Dis. 102:1029.
  2. Atoui, A., Khoury, A. E., Kallassy, M. and Lebrihi, A. 2012. Quantification of Fusarium graminearum and Fusarium culmorum by real-time PCR system and zearalenone assessment in maize. Int. J. Food Microbiol.154:59-65. https://doi.org/10.1016/j.ijfoodmicro.2011.12.022
  3. Cao, Y., Ling, J., Xie, B. and Yang, Y. 2015. Rapid detection and identification of Fusarium oxysporum f. sp. niveum. Biotechnol. Bull. 31:58-63.
  4. Chang, T.-H., Lin, Y.-H., Chen, K.-S., Huang, J.-W., Hsiao, S.-C. and Chang, P.-F.L. 2015. Cell wall reinforcement in watermelon shoot base related to its resistance to Fusarium wilt caused by Fusarium oxysporum f. sp. niveum. J. Agric. Sci. 153:296-305. https://doi.org/10.1017/s0021859614000057
  5. Costa, A. E. S., da Cunha, F. S., Honorato, A. D. C., Capucho, A. S., Dias, R. D. C. S., Borel, J. C. and Ishokawa, F. H. 2018. Resistance to fusarium wilt in watermelon accessions inoculated by chlamydospores. Sci. Hortic. 228:181-186. https://doi.org/10.1016/j.scienta.2017.10.007
  6. de Sousa, M. V., Machado, J. D. C., Simmons, H. E. and Munkvold, G. P. 2015. Real-time quantitative PCR assays for the rapid detection and quantification of Fusarium oxysporum f. sp. phaseoli in Phaseolus vulgaris (common bean) seeds. Plant Pathol. 64:478-488. https://doi.org/10.1111/ppa.12257
  7. Epstein, L., Kaur, S., Chang, P. L., Carrasquilla-Garcia, N., Lyu, G., Cook, D. R., Subbarao, K. V. and O'Donnell, K. 2017. Races of the celery pathogen Fusarium oxysporum f. sp. apii are polyphyletic. Phytopathology 107:463-473. https://doi.org/10.1094/PHYTO-04-16-0174-R
  8. Everts, K. L., Egel, D. S., Langston, D. and Zhou, X.-G. 2014. Chemical management of Fusarium wilt of watermelon. Crop Prot. 66:114-119. https://doi.org/10.1016/j.cropro.2014.09.003
  9. Faheem, M., Raza, W., Zhong, W., Nan, Z., Shen, Q. and Xu, Y. 2015. Evaluation of the biocontrol potential of Streptomyces goshikiensis YCXU against Fusarium oxysporum f. sp. niveum. Biol. Control 81:101-110. https://doi.org/10.1016/j.biocontrol.2014.11.012
  10. Haegi, A., Catalano, V., Luongo, L., Vitale, S., Scotton, M., Ficcadenti, N. and Belisario, A. 2013. A newly developed real-time PCR assay for detection and quantification of Fusarium oxysporum and its use in compatible and incompatible interactions with grafted melon genotypes. Phytopathology 103:802-810. https://doi.org/10.1094/PHYTO-11-12-0293-R
  11. Huang, C.-H., Tsai, R.-T. and Vallad, G. E. 2016. Development of a TaqMan real-time polymerase chain reaction assay for detection and quantification of Fusarium oxysporum f. sp. lycopersici in soil. J. Phytopathol. 164:455-463. https://doi.org/10.1111/jph.12471
  12. Jimenez-Fernandez, D., Montes-Borrego, M., Jimenez-Diaz, R. M., Navas-Cortes, J. A. and Landa, B. B. 2011. In planta and soil quantification of Fusarium oxysporum f. sp. ciceris and evaluation of Fusarium wilt resistance in chickpea with a newly developed quantitative polymerase chain reaction assay. Phytopathology 101:250-262. https://doi.org/10.1094/PHYTO-07-10-0190
  13. Jimenez-Fernandeza, D., Montes-Borrego, M., Navas-Cortes, J. A., Jimenez-Diaz, R. M. and Landa, B. B. 2010. Identification and quantification of Fusarium oxysporum in planta and soil by means of an improved specific and quantitative PCR assay. Appl. Soil Ecol. 46:372-382. https://doi.org/10.1016/j.apsoil.2010.10.001
  14. Kim, H., Hwang, S.-M., Lee, J. H., Oh, M., Han, J. W. and Choi, G. J. 2017. Specific PCR detection of Fusarium oxysporum f. sp. raphani: a causal agent of Fusarium wilt on radish plants. Lett. Appl. Microbiol. 65:133-140. https://doi.org/10.1111/lam.12761
  15. Leplat, J., Heraud, C., Gautheron, E., Mangin, P., Falchetto, L. and Steinberg, C. 2016. Colonization dynamic of various crop residues by Fusarium graminearum monitored through real-time PCR measurements. J. Appl. Microbiol. 121:1394-1405. https://doi.org/10.1111/jam.13259
  16. Li, L. 2013. Molecular detection of watermelon and melon blight. M.S. thesis. Zhejiang University, Hangzhou, Zhejiang, China.
  17. Li, Y., Mao, L., Yan, D., Ma, T., Shen, J., Guo, M., Wang, Q., Ouyang, C. and Cao, A. 2014. Quantification of Fusarium oxysporum in fumigated soils by a newly developed real-time PCR assay to assess the efficacy of fumigants for Fusarium wilt disease in strawberry plants. Pest Manag. Sci. 70:1669-1675. https://doi.org/10.1002/ps.3700
  18. Lin, Y.-H., Chen, K.-S., Chang, J.-Y., Wan, Y.-L., Hsu, C.-C., Huang, J.-W. and Chang, P.-F. L. 2010. Development of the molecular methods for rapid detection and differentiation of Fusarium oxysporum and F. oxysporum f. sp. niveum in Taiwan. N. Biotechnol. 27:409-418. https://doi.org/10.1016/j.nbt.2010.05.005
  19. Lin, Y.-H., Su, C.-C., Chao, C.-P., Chen, C.-Y., Chang, C.-J., Huang, J.-W. and Chang, P.-F. L. 2013. A molecular diagnosis method using real-time PCR for quantification and detection of Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol. 135:395-405. https://doi.org/10.1007/s10658-012-0096-0
  20. Lu, G., Guo, S., Zhang, H., Geng, L., Martyn, R. D. and Xu, Y. 2014. Colonization of Fusarium wilt-resistant and susceptible watermelon roots by a green-fluorescent-protein-tagged isolate of Fusarium oxysporum f. sp. niveum. J. Phytopathol. 162:228-237. https://doi.org/10.1111/jph.12174
  21. Martyn, R. D. 2014. Fusarium wilt of watermelon: 120 years of research. Hortic. Rev. 42:349-442.
  22. Martyn, R. D. and Vakalounakis, D. J. 2012. Fusarium wilt of greenhouse cucurbits: melons, watermelons and cucumber. In: Fusarium wilt of greenhouse vegetable and ornamental crops, eds. by M. L. Gullino, J. Katan and A. Garibibald, pp. 159-174. APS Press, St. Paul, MN, USA.
  23. Ortega, S. F., Tomlinson, J., Gilardi, G., Spadaro, D., Gullino, M. L., Garibaldi, A. and Boonham, N. 2018. Rapid detection of Fusarium oxysporum f. sp. lactucae on soil, lettuce seeds and plants using loop-mediated isothermal amplification. Plant Pathol. 67:1462-1473. https://doi.org/10.1111/ppa.12855
  24. Peng, J., Zhan, Y., Zeng, F., Long, H., Pei, Y. and Guo, J. 2013. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. niveum in soil. Fems Microbiol. Lett. 349:127-134. https://doi.org/10.1111/1574-6968.12305
  25. Petkar, A., Harris-Shultz, K., Wang, H., Brewer, M. T., Sumabat, L. and Ji, P. 2019. Genetic and phenotypic diversity of Fusarium oxysporum f. sp. niveum populations from watermelon in the southeastern United States. PLoS ONE 14:e0219821. https://doi.org/10.1371/journal.pone.0219821
  26. Petkar, A. and Ji, P. 2017. Infection courts in watermelon plants leading to seed infestation by Fusarium oxysporum f. sp. niveum. Phytopathology 107:828-833. https://doi.org/10.1094/PHYTO-12-16-0429-R
  27. Raza, W., Yuan, J., Ling, N., Huang, Q. and Shen, Q. 2015. Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum. Biol. Control 80:89-95. https://doi.org/10.1016/j.biocontrol.2014.09.004
  28. Scarlett, K., Tesoriero, L., Daniel, R. and Guest, D. 2013. Detection and quantification of Fusarium oxysporum f. sp. cucumerinum in environmental samples using a specific quantitative PCR assay. Eur. J. Plant Pathol. 137:315-324. https://doi.org/10.1007/s10658-013-0244-1
  29. van Dam, P., de Sain, M., ter Horst, A., van der Gragt, M. and Rep, M. 2018. Use of comparative genomics-based markers for discrimination of host specificity in Fusarium oxysporum. Appl. Environ. Microbiol. 84:e01868-17.
  30. Willsey, T. L., Chatterton, S., Heynen, M. and Erickson, A. 2018. Detection of interactions between the pea root rot pathogens Aphanomyces euteiches and Fusarium spp. using a multiplex qPCR assay. Plant Pathol. 67:1912-1923. https://doi.org/10.1111/ppa.12895
  31. Zhang, M., Ge, J. and Yu, X. 2017. Transcriptome analysis reveals the mechanism of fungicidal of thymol against Fusarium oxysporum f. sp. niveum. Curr. Microbiol. 75:410-419. https://doi.org/10.1007/s00284-017-1396-6
  32. Zhang, Z., Zhang, J., Wang, Y. and Zheng, X. 2005. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil. FEMS Microbiol. Lett. 249:39-47. https://doi.org/10.1016/j.femsle.2005.05.057
  33. Zhou, X. G. and Everts, K. L. 2004. Quantification of root and stem colonization of watermelon by Fusarium oxysporum f. sp. niveum and its use in evaluating resistance. Phytopathology 94:832-841. https://doi.org/10.1094/PHYTO.2004.94.8.832
  34. Zhou, X. G., Everts, K. L. and Bruton, B. D. 2010. Race 3, a new and highly virulent race of Fusarium oxysporum f. sp. niveum causing Fusarium wilt in watermelon. Plant Dis. 94:92-98. https://doi.org/10.1094/pdis-94-1-0092
  35. Zhu, Z. X., Zheng, L., Hsiang, T., Yang, G. L., Zhao, D. L., Lv, B., Chen, Y. F. and Huang, J. B. 2016. Detection and quantification of Fusarium commune in host tissue and infested soil using real-time PCR. Plant Pathol. 65:218-226. https://doi.org/10.1111/ppa.12412