• Title/Summary/Keyword: Furnace Slag Powder

Search Result 269, Processing Time 0.03 seconds

Comparison of National Standards for Blast Furnace Slag and Fly Ash between Korea and China (한국과 중국간의 고로슬래그 미분말 및 플라이 애시의 품질 규정 비교)

  • Hu, Yun-Yao;Lim, Gun-Su;kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.63-64
    • /
    • 2022
  • In this study, the quality of mineral admixture, Comparison of blast-furnace slag(BS) and fly ash(FA)in Korea and China. In the case of BS, Korea is mainly classified into 1 type to 4 types according to the specific surface area, whereas China is classified into S105, 95, and 75 according to the activity index of 28 days of age. In the case of FA, Korea is like BS, is mainly classified into types 1 to 4 according to specific surface area, whereas China is classified into F, C (class F, class C) by ingredients and class I, II, and III according to powder and ignition loss.

  • PDF

Application of expert systems in prediction of flexural strength of cement mortars

  • Gulbandilar, Eyyup;Kocak, Yilmaz
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.1-16
    • /
    • 2016
  • In this study, an Artificial Neural Network (ANN) and Adaptive Network-based Fuzzy Inference Systems (ANFIS) prediction models for flexural strength of the cement mortars have been developed. For purpose of constructing this models, 12 different mixes with 144 specimens of the 2, 7, 28 and 90 days flexural strength experimental results of cement mortars containing pure Portland cement (PC), blast furnace slag (BFS), waste tire rubber powder (WTRP) and BFS+WTRP used in training and testing for ANN and ANFIS were gathered from the standard cement tests. The data used in the ANN and ANFIS models are arranged in a format of four input parameters that cover the Portland cement, BFS, WTRP and age of samples and an output parameter which is flexural strength of cement mortars. The ANN and ANFIS models have produced notable excellent outputs with higher coefficients of determination of $R^2$, RMS and MAPE. For the testing of dataset, the $R^2$, RMS and MAPE values for the ANN model were 0.9892, 0.1715 and 0.0212, respectively. Furthermore, the $R^2$, RMS and MAPE values for the ANFIS model were 0.9831, 0.1947 and 0.0270, respectively. As a result, in the models, the training and testing results indicated that experimental data can be estimated to a superior close extent by the ANN and ANFIS models.

The Experimental Study on the Heat Hydration Properties of Concrete According to Binder Conditions (결합재 조건에 따른 콘크리트의 수화발열 특성에 관한 연구)

  • Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deuk-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.769-776
    • /
    • 2006
  • Recently, owing to the development of industry and the improvement of building techniques, concrete structures are becoming larger and higher. In hardening of these large connote structures, the heat of hydration gives rise to considerable thermal stress depending on the size and environmental condition of concrete, which might cause thermal cracking. Especially, the crack may cause severe damage to the safety and the durability of concrete structure. This study investigates the thermal properties of concrete according to several binder conditions, such as OPC, Belite rich cement(BRC), slag cement(SC), blast furnace slag(B) added cement fly ash(F) added cement and blast-furnace-slag and fly ash added cement. As a result of this study, the properly of concrete is most better BRC than others, and fly ash(25%) added cement and BFS(35%)-fly ash(15%) added cement gets superior effect in the control of heat hydration. But synthetically considered properties of concrete, workablity, strength heat hydration, etc, it is more effective to use mineral admixture. Especially, to be used Blast Furnace slag is more effective.

Evaluation of Fluidity and Compressive Strength of Mortar by Grading Variation of Ferro-Nickel Slag Sand (페로니켈 슬래그 잔골재의 입도 변화에 따른 모르타르의 유동성 및 압축강도 평가)

  • Kim, Do-Bin;Min, Sang-Hyun;Kim, Jeong-Hyeon;Ban, Jun-Mo;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.206-207
    • /
    • 2017
  • We investigated the fluidity and compressive strength properties of mortar by Grading Variation of Ferro-Nickel Slag Sand in order to improve the utilization of ferro-nickel which is the by-product produced by making stainless steel, in the construction industry.

  • PDF

Application of Ferronickel Slag Aggregate to Improve Workability and Strength of Non-Sintered Cement Mortar (비소성 시멘트 모르타르의 작업성 및 강도 개선을 위한 페로니켈슬래그 골재의 적용방안)

  • Jang, Kyung-Soo;Na, Hyeong-Won;Hyung, Won-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.309-310
    • /
    • 2023
  • Slag and ash generally have a higher powder degree than portland cement, so workability may deteriorate under the same unit quantity condition, and strength and durability decrease when the unit quantity is increased. At this time, if an aggregate having a low water absorption and an appropriate particle size is used to recover the loss of strength, it can contribute to reducing the unit quantity of the binder. Therefore, for the purpose of improving the workability and strength of non-sintered cement mortar using slag and ash, ferro nikel slag whose particle size was adjusted was used as an aggregate and its applicability was identified. In this experimental condition, it was confirmed that non-sintered cement mortar tends to improve workability and secure strength when ferro nikel slag having various particle size distributions is used as an aggregate. This can be analyzed as the effect of ferro nikel slag material properties including glassy properties and mixing conditions with a wide particle size distribution.

  • PDF

Properties of Cement Mortar According to Substitution Ratio of High Calcium Fly Ash Based on Blast Furnace Slag (고로슬래그 기반 고칼슘 플라이애시 치환비율에 따른 시멘트 모르타르의 특성)

  • Cho, Seong-Woo;Mun, Kyung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 2020
  • In the industry, due to the carbon dioxide gas produced during cement production is increasing, research on recycling by-products has been actively conducted. In the industrial by-products, the high calcium fly ash(HCFA) produced by the blast-furnace in the circulating fluidized bed combustion method has a high ratio of CaO and CaSO4. In view of this, the purpose of this is to use high calcium fly ash(HCFA) as a stimulant in blast furnace slag powder and use it as a cement substitute. As a result, it is judged that the substitution ratio of HCFA should be 15% or less. In addition, although durability and strength are relatively lower than of OPC, it is considered that it can be utilized as an environmentally building material.

A study on the quality performances of the high flowing concrete for binder types (분체의 종류에 따른 고유동 콘크리트의 품질성능에 관한 연구)

  • 권영호;이현호;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.567-572
    • /
    • 2002
  • This research investigates experimentally an effect on the quality performances of the high flowing concrete according to binder types. The purpose of this study is to determine the optimum mix proportion of the high flowing concrete having good flowability, viscosity and no-segregation. For this purpose, two types using belite cement+lime stone powder(LSP) and furnace slag cement+lime stone powder are selected and tested by design factors including water cement ratio, fine and coarse aggregate volume ratio. As test results of this study, the optimum mix proportion for binder types is as followings. 1) One type based belite cement ; water cement ratio $51^{\circ}C$, fine aggregate volume ratio $43^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $42.7^{\circ}C$. 2) Another type based slag cement : water cement ratio $41^{\circ}C$, fine aggregate volume ratio $47^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $13.5^{\circ}C$.

  • PDF

Flame Retardancy and Mechanical Property of Recycled Polyolefinic Plastic Composites with Hybrid fillers (폴리올레핀계 폐플라스틱/복합filler 성형체의 난연성 및 기계적 물성 연구)

  • 강영구;송종혁
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.56-63
    • /
    • 2003
  • Flame retardancy and mechanical properties of recycled polyolefinic plastics/inorganic filler composite systems were investigated by using several inorganic flame retardants such as magnesium hydroxide and slag powder generated electro arc furnace Compatibilizer user each maleic anhydride functionalized polyethylene (PE-g-MAH) and polypropylene(PP-g-MAH) or used mixture of these. The effect of polymeric compatibilizers on the properties of composites was studied by tensile and impact test, differential scanning calorimetry, in the changed fracture mechanism. The improved adhesion was particularly reflected in the mechanical properties. The flame retardancy of composites was examined by measuring limiting oxygen index(LOI, ASTM D2863), smoke density(ASTM D2843) and vertical burning test(UL94). Regarding the flame retardant effect, the EAF slag powder is behaving as synergists as they are only active in the presence of magnesium hydroxide.

Experimental Study on Properties of Permeable Polymer Concrete with Blast Furnace Slag and Fly Ash (고로 슬래그와 플라이 애시를 혼입(混入)한 투수성(透水性) 폴리머 콘크리트의 특성(特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Sung, Chan Yong;Kim, In Su;Jo, Il Ho;Youn, Joon No;Kim, Young Ik;Seo, Dae Seuk
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.2
    • /
    • pp.49-55
    • /
    • 1999
  • This study is performed to evaluate the properties of permeable polymer concrete with blast furnace slag and fly ash. The following conclusions are drawn: 1. The highest strength is achieved by 50% filled blast furnace slag powder and fly ash permeable polymer concrete, it is increased 36% by compressive strength and 217% by bending strength than that of the normal cement concrete, respectively. 2. The static modulus of elasticity is in the range of $100{\times}10^3{\sim}130{\times}10^3kgf/cm^2$, which is approximately 43~51% of that of the normal cement concrete. 3. The dynamic modulus of elasticity is in the range of $102{\times}10^3{\sim}130{\times}10^3kgf/cm^2$, which is approximately less compared to that of the normal cement concrete. The highest dynamic modulus is showed by 50% filled blast furnace slag powder and fly ash permeable polymer concrete. The dynamic modulus of elasticity are increased approximately 0~4% than that of the static modulus. 4. The water permeability is in the range of $4.612{\sim}5.913l/cm^2/h$, and it is largely dependent upon the mix design.

  • PDF

An Experimental Study on Early Strength and Drying Shrinkage of High Strength Concrete Using High Volumes of Ground Granulated Blast-furnace Slag(GGBS) (고로슬래그 미분말을 대량 사용한 고강도 콘크리트의 조기강도 및 길이변화 특성에 관한 실험적 연구)

  • Yang, Wan-Hee;Ryu, Dong-Woo;Kim, Woo-Jae;Park, Dong-Cheol;Seo, Chee-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.391-399
    • /
    • 2013
  • For high strength concrete of 40~60 MPa, the effects on the early strength and concrete dry shrinkage properties replacing 60~80% of Ordinary Portland Cement with Blast Furnace Slag Powder and using the Alkali Activator (Modified Alkali Sulfate type) are considered in this study. 1% Alkali Activator to the binder, cumulative heat of hydration for 72 hours was increased approximately 45%, indicating that heat of hydration contributes to the early strength of concrete, and the slump flow of concrete decreased slightly by 3.7~6.6%, and the 3- and 7- strength was increased by 8~12%, which that the Alkali Activator (Modified Alkali Sulfate type) is effective for ensuring the early strength when manufacturing High Strength Concrete (60%) of Blast Furnace Slag Powder. Furthermore, the dry shrinkage test, both 40 MPa and 60 MPa specimens had level of length changes in order of BS40 > BS60 > BS60A > BS80A, and the use of the Alkali Activator somewhat improved resistance to dry shrinkage.