• Title/Summary/Keyword: Fungal species

Search Result 941, Processing Time 0.029 seconds

Fungal Diversity and Enzyme Activity Associated with the Macroalgae, Agarum clathratum

  • Lee, Seobihn;Park, Myung Soo;Lee, Hanbyul;Kim, Jae-Jin;Eimes, John A.;Lim, Young Woon
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.50-58
    • /
    • 2019
  • Agarum clathratum, a brown macroalgae species, has recently become a serious environmental problem on the coasts of Korea. In an effort to solve this problem, fungal diversity associated with decaying A. clathratum was investigated and related ${\beta}$-glucosidase and endoglucanase activities were described. A total of 233 fungal strains were isolated from A. clathratum at 15 sites and identified 89 species based on morphology and a multigene analysis using the internal transcribed spacer region (ITS) and protein-coding genes including actin (act), ${\beta}$-tubulin (benA), calmodulin (CaM), and translation elongation factor (tef1). Acremonium, Corollospora, and Penicillium were the dominant genera, and Acremonium fuci and Corollospora gracilis were the dominant species. Fifty-one species exhibited cellulase activity, with A. fuci, Alfaria terrestris, Hypoxylon perforatum, P. madriti, and Pleosporales sp. Five showing the highest enzyme activities. Further enzyme quantification confirmed that these species had higher cellulase activity than P. crysogenum, a fungal species described in previous studies. This study lays the groundwork for bioremediation using fungi to remove decaying seaweed from populated areas and provides important background for potential industrial applications of environmentally friendly processes.

Fungal Community Analyses of Endophytic Fungi from Two Oak Species, Quercus mongolica and Quercus serrata, in Korea

  • Nguyen, Manh Ha;Shin, Keum Chul;Lee, Jong Kyu
    • Mycobiology
    • /
    • v.49 no.4
    • /
    • pp.385-395
    • /
    • 2021
  • Fungal endophytes have been recorded in various plant species with a richness of diversity, and their presence plays an essential role in host plant protection against biotic and abiotic stresses. This study applied the Illumina MiSeq sequencing platform based on the amplification of fungal ribosomal ITS2 region to analyze fungal endophytic communities of two oak species (Quercus mongolica and Q. serrata) with different oak wilt disease susceptibilities in Korea. The results showed a total of 230,768 sequencing reads were obtained and clustered at a 97% similarity threshold into 709 operational taxonomic units (OTUs). The OTUs of Q. serrata were higher than that of Q. mongolica with the number of 617 OTUs and 512 OTUs, respectively. Shannon index also showed that Q. serrata had a significantly higher level of fungal diversity than Q. mongolica. Total of OTUs were assigned into 5 fungal phyla, 17 classes, 60 orders, 133 families, 195 genera, and 280 species. Ascomycota was the dominant phylum with 75.11% relative abundance, followed by Basidiomycota with 5.28%. Leptosillia, Aureobasidium and Acanthostigma were the most abundant genera detected in Q. serrata with the average relative abundance of 2.85, 2.76, and 2.19%, respectively. On the other hand, Peltaster, Cladosporium and Monochaetia were the most common genera detected in Q. mongolica with the average relative abundance of 4.83, 3.03, and 2.87%, respectively. Our results indicated that fungal endophytic communities were significantly different between two oak species and these differences could influence responses of host trees to oak wilt disease caused by Raffaelea quercus-mongolicae.

Geographical Isolation and Root-Associated Fungi in the Marine Terrains: A Step Toward Establishing a Strategy for Acquiring Unique Microbial Resources

  • Park, Jong Myong;Hong, Ji Won;Lee, Woong;Lee, Byoung-Hee;You, Young-Hyun
    • Mycobiology
    • /
    • v.49 no.3
    • /
    • pp.235-248
    • /
    • 2021
  • This study aimed to understand whether the geo-ecological segregation of native plant species affects the root-associated fungal community. Rhizoplane (RP) and rhizosphere (RS) fungal microbiota of Sedum takesimense native to three geographically segregated coastal regions (volcanic ocean islands) were analyzed using culture-independent methods: 568,507 quality sequences, 1399 operational taxonomic units, five phyla, and 181 genera were obtained. Across all regions, significant differences in the phyla distribution and ratio were confirmed. The Chao's richness value was greater for RS than for RP, and this variance coincided with the number of genera. In contrast, the dominance of specific genera in the RS (Simpson value) was lower than the RP at all sites. The taxonomic identity of most fungal species (95%) closely interacting with the common host plant was different. Meanwhile, a considerable number of RP only residing fungal genera were thought to have close interdependency on their host halophyte. Among these, Metarhizium was the sole genus common to all sites. These suggest that the relationship between potential symbiotic fungi and their host halophyte species evolved with a regional dependency, in the same halophyte species, and of the same natural habitat (volcanic islands); further, the fungal community differenced in distinct geographical regions. Importantly, geographical segregation should be accounted for in national culture collections, based on taxonomical uniqueness.

Molecular Identification of Arbuscular Mycorrhizal Fungal Spores Collected in Korea

  • Lee, Jai-Koo;Park, Sang-Hyeon;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • Arbuscular mycorrhizas (AM) have mutualistic symbiosis with plants and thus efforts have been placed on application of these symbiotic relationships to agricultural and environmental fields. In this study, AM fungi were collected from 25 sites growing with 16 host plant species in Korea and cultured with Sorghum bicolor in greenhouse condition. AM fungal spores were extracted and identified using both morphological and molecular methods. Using morphological characters, total 15 morpho-speices were identified. DNA was extracted from single spore of AM fungi and a partial region on 18S rDNA was amplified using nested PCR with AM fungal specific primers AML1/AML2. A total of 36 18S rDNA sequences were analyzed for phylogenetic analysis and 15 groups of AM fungi were identified using both morphological and molecular data of spores. Among the species, 4 species, Archaeospora leptoticha, Scutellospora castanea, S. cerradensis, S. weresubiae were described for the first time in Korea and two species in Glomus and a species in Gigaspora were not identified. Morphological and molecular identification of AM fungal spores in this study would help identify AM fungal community colonizing roots.

Effects of Fungicides and Bioagents on Seed Mycoflora, Growth and Yield of Watermelon

  • Bharath, B.G.;Lokesh, S.;Shetty, H.S.
    • Animal cells and systems
    • /
    • v.9 no.2
    • /
    • pp.75-78
    • /
    • 2005
  • Fungicides and antagonists were tested for their efficacy in the management of fungal pathogens of watermelon. The fungal species in different genera were isolated from the seeds of watermelon and their vulnerability was assessed against an array of chemicals and bioagents. Among the fungal pathogens, Fusarium species were effectively controlled by Bavistin. Topsin also showed the promising effects against all the fungal pathogens, and Dithane M-45 effectively controlled Didymella bryoniae. Seed treatment with antagonists like Trichoderma harzianum and T. viride improved the seed germination, seedling vigour and reduced the incidence of seed-borne fungal pathogens. Bavistin and Topsin among chemicals increased significantly the seed germination and vigour index. Trichoderma harzianum showed its efficacy against all Fusarium species and even stood effective than Captan and Blitox. However, Pseudomonas fIuorescens also showed promising effect against Didymella bryoniae over fungicides. Under field condition, Topsin and Dithane M-45 showed better yield than Bioagents.

Exploitation of Reactive Oxygen Species by Fungi: Roles in Host-Fungus Interaction and Fungal Development

  • Kim, Hyo Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1455-1463
    • /
    • 2014
  • In the past, reactive oxygen species (ROS) have been considered a harmful byproduct of aerobic metabolism. However, accumulating evidence implicates redox homeostasis, which maintains appropriate ROS levels, in cell proliferation and differentiation in plants and animals. Similarly, ROS generation and signaling are instrumental in fungal development and host-fungus interaction. In fungi, NADPH oxidase, a homolog of human $gp91^{phox}$, generates superoxide and is the main source of ROS. The mechanism of activation and signaling by NADPH oxidases in fungi appears to be largely comparable to those in plants and animals. Recent studies have shown that the fungal NADPH oxidase homologs NoxA (Nox1), NoxB (Nox2), and NoxC (Nox3) have distinct functions. In particular, these studies have consistently demonstrated the impact of NoxA on the development of fungal multicellular structures. Both NoxA and NoxB (but not NoxC) are involved in host-fungus interactions, with the function of NoxA being more critical than that of NoxB.

Microcyle Conidiation in Filamentous Fungi

  • Jung, Boknam;Kim, Soyeon;Lee, Jungkwan
    • Mycobiology
    • /
    • v.42 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • The typical life cycle of filamentous fungi commonly involves asexual sporulation after vegetative growth in response to environmental factors. The production of asexual spores is critical in the life cycle of most filamentous fungi. Normally, conidia are produced from vegetative hyphae (termed mycelia). However, fungal species subjected to stress conditions exhibit an extremely simplified asexual life cycle, in which the conidia that germinate directly generate further conidia, without forming mycelia. This phenomenon has been termed as microcycle conidiation, and to date has been reported in more than 100 fungal species. In this review, first, we present the morphological properties of fungi during microcycle conidiation, and divide microcycle conidiation into four simple categories, even though fungal species exhibit a wide variety of morphological differences during microcycle conidiogenesis. Second, we describe the factors that influence microcycle conidiation in various fungal species, and present recent genetic studies that have identified the genes responsible for this process. Finally, we discuss the biological meaning and application of microcycle conidiation.

New Species and Eight Undescribed Species Belonging to the Families Aspergillaceae and Trichocomaceae in Korea

  • Nguyen, Thuong T.T.;Noh, Kyo Jang Kwan;Lee, Hyang Burm
    • Mycobiology
    • /
    • v.49 no.6
    • /
    • pp.534-550
    • /
    • 2021
  • During a survey of fungal diversity associated with insects, mud, soil, and freshwater niches in different areas in Korea, nine interesting fungal strains were isolated. Based on their morphological characteristics and molecular phylogeny analyses, using a combined data set of b-tubulin (BenA), calmodulin (CaM), and second largest subunit of RNA polymerase (RPB2) sequences, the strains CNUFC AM-44, CNUFC JCW3-4, CNUFC S708, CNUFC WT202, CNUFC AS1-29, CNUFC JCW3-5, CNUFC JDP37, and CNUFC JDP62 were identified as Aspergillus alabamensis, A. floridensis, A. subversicolor, Penicillium flavigenum, P. laevigatum, P. lenticrescens, Talaromyces adpressus, and T. beijingensis, respectively. The strain CNUFC JT1301 belongs to series Westlingiorum in section Citrina and is phylogenetically related to P. manginii. However, slow growth when cultivated on CYA, MEA, CREA is observed and the property can be used to easily distinguish the new species from these species. Additionally, P. manginii is known to produce sclerotia, while CNUFC JT1301 strain does not. Herein, the new fungal species is proposed as P. aquadulcis sp. nov. Eight species, A. alabamensis, A. floridensis, A. subversicolor, P. flavigenum, P. laevigatum, P. lenticrescens, T. adpressus, and T. beijingensis, have not been previously reported in Korea. The present study expands the known distribution of fungal species belonging to the families Aspergillaceae and Trichocomaceae in Korea.

Bioconversion of Straw into Improved Fodder: Fungal Flora Decomposing Rice Straw

  • Helal, G.A.
    • Mycobiology
    • /
    • v.33 no.3
    • /
    • pp.150-157
    • /
    • 2005
  • The fungal flora decomposing rice straw were investigated all over the soil of Sharkia Province, east of Nile Delta, Egypt, using the nylon net bag technique. Sixty-four straw-decomposing species belonging to 30 genera were isolated by the dilution plate method in ground rice straw-Czapek's agar medium at pH 6. The plates were incubated separately at $5^{\circ}C,\;25^{\circ}C\;and\;45^{\circ}C$, respectively. Twenty nine species belonging to 14 genera were isolated at $5^{\circ}C$. The most frequent genus was Penicillium (seven species), and the next frequent genera were Acremonium (three species), Fusarium (three species), Alternaria, Chaetomium, Cladosporium, Mucor, Stachybotrys (two species) and Rhizopus stolonifer. At $25^{\circ}C$, 47 species belonging to 24 genera were isolated. The most frequent genus was Aspergillus (nine species), and the next frequent genera were ranked by Penicillium (five species), Chaetomium (three species), Fusarium (three species). Each of Alternaria, Cladosporium, Mucor, Myrothecium and Trichoderma was represented by two species. At $45^{\circ}C$, 15 species belonging to seven genera were isolated. These were seven species of Aspergillus, two species of Chaetomium and two species of Emericella, while Humicola, Malbranchea, Rhizomucor and Talaromyces were represented by one species respectively. The total counts of fungi the genera, and species per gram of dry straw were significantly affected by incubation temperature and soil analysis (P < 0.05).

Investigation of Ectomycorrhizal Fungal Colonization in Pinus thunbergii Seedlings at a Plantation Area in Gangneung, using Morphotyping and Sequencing the rDNA Internal Transcribed Spacer Region

  • Obase, Keisuke;Cha, Joo-Young;Lee, Jong-Kyu;Lee, Sang-Yong;Lee, Jin-Ho;Chun, Kun-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.172-178
    • /
    • 2010
  • The status of ectomycorrhizal (ECM) fungal colonization in Pinus thunbergii seedlings was investigated 2 years after planting in an eastern coastal area of Korea. We established three $10{\times}10$ m plots at a P. thunbergii plantation in Gangneung and sampled lateral roots from 10 seedlings in each plot. ECMs were classified into morphological groups and the number of root tips of each morphotype was counted. In total, 8 ECM morphotypes were observed and fungal species that form each morphotype were identified by sequencing of the internal transcribed spacer (ITS) region of the nuclear rDNA. Suillus granulatus was the most abundant species (44.1-65.7% of relative abundance) in all plots, followed by Tomentella ellisii (14.0-37.8%) and unidentified fungus belonged to Atheliaceae (10.6-20.1%). These 3 fungal species accounted for almost all of the ECM abundance in each plot (94.9-99.8%). The remaining 5 fungal species were uncommon and rare. There was no clear difference in ECM fungal communities among plots. Community structure of ECM fungi in the young P. thunbergii plantation was simple and composed of fungal species that were also observed in mature coastal pine forests.