Browse > Article
http://dx.doi.org/10.4014/jmb.1407.07072

Exploitation of Reactive Oxygen Species by Fungi: Roles in Host-Fungus Interaction and Fungal Development  

Kim, Hyo Jin (Fermentation Research Center, Korea Food Research Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.11, 2014 , pp. 1455-1463 More about this Journal
Abstract
In the past, reactive oxygen species (ROS) have been considered a harmful byproduct of aerobic metabolism. However, accumulating evidence implicates redox homeostasis, which maintains appropriate ROS levels, in cell proliferation and differentiation in plants and animals. Similarly, ROS generation and signaling are instrumental in fungal development and host-fungus interaction. In fungi, NADPH oxidase, a homolog of human $gp91^{phox}$, generates superoxide and is the main source of ROS. The mechanism of activation and signaling by NADPH oxidases in fungi appears to be largely comparable to those in plants and animals. Recent studies have shown that the fungal NADPH oxidase homologs NoxA (Nox1), NoxB (Nox2), and NoxC (Nox3) have distinct functions. In particular, these studies have consistently demonstrated the impact of NoxA on the development of fungal multicellular structures. Both NoxA and NoxB (but not NoxC) are involved in host-fungus interactions, with the function of NoxA being more critical than that of NoxB.
Keywords
Reactive oxygen species; NADPH oxidase; fungal development; host-fungus interaction;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Lev S, Hadar R, Amedeo P, Baker SE, Yoder OC, Horwitz BA. 2005. Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals. Eukaryot. Cell 4: 443-454.   DOI   ScienceOn
2 Lin CH, Yang SL, Chung KR. 2009. The YAP1 homologmediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus Alternaria alternata in citrus. Mol. Plant Microbe Interact. 22: 942-952.   DOI   ScienceOn
3 Livanos P, Apostolakos P, Galatis B. 2012. Plant cell division: ROS homeostasis is required. Plant Signal. Behav. 7: 771-778.   DOI
4 Meng TC, Fukada T, Tonks NK. 2002. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9: 387-399.   DOI   ScienceOn
5 Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, et al. 2009. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal. 2: ra45.
6 Montero-Barrientos M, Hermosa R, Cardoza RE, Gutierrez S, Monte E. 2011. Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum. Appl. Environ. Microbiol. 77: 3009-3016.   DOI   ScienceOn
7 Morinaka A, Yamada M, Itofusa R, Funato Y, Yoshimura Y, Nakamura F, et al. 2011. Thioredoxin mediates oxidationdependent phosphorylation of CRMP2 and growth cone collapse. Sci. Signal. 4: ra26.
8 Nauseef WM. 2004. Assembly of the phagocyte NADPH oxidase. Histochem. Cell Biol. 122: 277-291.   DOI
9 Nauseef WM. 2008. Biological roles for the NOX family NADPH oxidases. J. Biol. Chem. 283: 16961-16965.   DOI   ScienceOn
10 Nishida M, Sawa T, Kitajima N, Ono K, Inoue H, Ihara H, et al. 2012. Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat. Chem. Biol. 8: 714-724.   DOI   ScienceOn
11 Novo E, Parola M. 2008. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair 1: 5.   DOI   ScienceOn
12 Ostman A, Frijhoff J, Sandin A, Bohmer FD. 2011. Regulation of protein tyrosine phosphatases by reversible oxidation. J. Biochem. 150: 345-356.   DOI   ScienceOn
13 Owusu-Ansah E, Banerjee U. 2009. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461: 537-541.   DOI   ScienceOn
14 Rinnerthaler M, Buttner S, Laun P, Heeren G, Felder TK, Klinger H, et al. 2012. Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast. Proc. Natl. Acad. Sci. USA 109: 8658-8663.   DOI
15 Roca MG, Weichert M, Siegmund U, Tudzynski P, Fleissner A. 2012. Germling fusion via conidial anastomosis tubes in the grey mould Botrytis cinerea requires NADPH oxidase activity. Fungal Biol. 116: 379-387.   DOI   ScienceOn
16 Rodriguez R, Redman R. 2005. Balancing the generation and elimination of reactive oxygen species. Proc. Natl. Acad. Sci. USA 102: 3175-3176.   DOI   ScienceOn
17 Rolke Y, Tudzynski P. 2008. The small GTPase Rac and the p21-activated kinase Cla4 in Claviceps purpurea: interaction and impact on polarity, development and pathogenicity. Mol. Microbiol. 68: 405-423.   DOI   ScienceOn
18 Sawa T, Zaki MH, Okamoto T, Akuta T, Tokutomi Y, Kim- Mitsuyama S, et al. 2007. Protein S -guany lation by the biological signal 8-nitroguanosine 3',5'-cyclic monophosphate. Nat. Chem. Biol. 3: 727-735.   DOI   ScienceOn
19 Ryder LS, Dagdas YF, Mentlak TA, Kershaw MJ, Thornton CR, Schuster M, et al. 2013. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proc. Natl. Acad. Sci. USA 110: 3179- 3184.   DOI
20 Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, et al. 1998. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17: 2596-2606.   DOI   ScienceOn
21 Schopfer FJ, Cipollina C, Freeman BA. 2011. Formation and signaling actions of electrophilic lipids. Chem. Rev. 111: 5997- 6021.   DOI   ScienceOn
22 Segal AW. 2005. How neutrophils kill microbes. Annu. Rev. Immunol. 23: 197-223.   DOI   ScienceOn
23 Segmuller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P. 2008. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol. Plant Microbe Interact. 21: 808-819.   DOI   ScienceOn
24 Singh KK. 2000. The Saccharomyces cerevisiae Sln1p-Ssk1p two-component system mediates response to oxidative stress and in an oxidant-specific fashion. Free Radic. Biol. Med. 29: 1043-1050.   DOI   ScienceOn
25 Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, et al. 1999. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401: 79-82.   DOI   ScienceOn
26 Tanaka A, Takemoto D, Hyon GS, Park P, Scott B. 2008. NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloe festucae and perennial ryegrass. Mol. Microbiol. 68: 1165-1178.   DOI   ScienceOn
27 Takemoto D, Kamakura S, Saikia S, Becker Y, Wrenn R, Tanaka A, et al. 2011. Polarity proteins Bem1 and Cdc24 a re components of the filamentous fungal NADPH oxidase complex. Proc. Natl. Acad. Sci. USA 108: 2861-2866.   DOI   ScienceOn
28 Takemoto D, Tanaka A, Scott B. 2006. A $p67^{Phox}$-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell 18: 2807-2821.   DOI   ScienceOn
29 Takemoto D, Tanaka A, Scott B. 2007. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet. Biol. 44: 1065-1076.   DOI   ScienceOn
30 Temme N, Tudzynski P. 2009. Does Botrytis cinerea ignore $H_2O_2$-induced oxidative stress during infection? Characterization of Botrytis activator protein 1. Mol. Plant Microbe Interact. 22: 987-998.   DOI   ScienceOn
31 Theopold U. 2009. Developmental biology: a bad boy comes good. Nature 461: 486-487.   DOI   ScienceOn
32 Torres MA, Jones JD, Dangl JL. 2005. Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat. Genet. 37: 1130-1134.   DOI   ScienceOn
33 Torres MA, Jones JD, Dangl JL. 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141: 373-378.   DOI   ScienceOn
34 Veal EA, Findlay VJ, D ay AM, B ozonet SM, Evans J M, Quinn J, Morgan BA. 2004. A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stressactivated MAP kinase. Mol. Cell 15: 129-139.   DOI   ScienceOn
35 Tripathy BC, Oelmuller R. 2012. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 7: 1621-1633.   DOI
36 Tsukagoshi H, Busch W, Benfey PN. 2010. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143: 606-616.   DOI   ScienceOn
37 van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H. 2003. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423: 773-777.   DOI   ScienceOn
38 Venugopalan V, Tripathi SK, Nahar P, Saradhi PP, Das RH, Gautam HK. 2013. Characterization of canthaxanthin isomers isolated from a new soil Dietzia sp. and their antioxidant activities. J. Microbiol. Biotechnol. 23: 237-245.   DOI   ScienceOn
39 Wang K, Zhang T, Dong Q, Nice EC, Huang C, Wei Y. 2013. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death Dis. 4: e537.   DOI   ScienceOn
40 Wang L, Mogg C, Walkowiak S, Joshi M, Subramaniam R. 2014. Characterization of NADPH oxidase genes NoxA and NoxB in Fusarium graminearum. Can. J. Plant Pathol. 36: 12-21.   DOI   ScienceOn
41 Yang SL, Chung KR. 2012. The NADPH oxidase-mediated production of hydrogen peroxide ($H_2O_2$) and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. Mol. Plant Pathol. 13: 900-914.   DOI   ScienceOn
42 Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373-399.   DOI   ScienceOn
43 Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W. 2005. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol. 13: 111-118.   DOI   ScienceOn
44 Ahmed KA, Sawa T, Ihara H, Kasamatsu S, Yoshitake J, Rahaman MM, et al. 2012. Regulation by mitochondrial superoxide and NADPH oxidase of cellular formation of nitrated cyclic GMP: potential implications for ROS signalling. Biochem. J. 441: 719-730.   DOI   ScienceOn
45 Akaike T, Nishida M, Fujii S. 2013. Regulation of redox signalling by an electrophilic cyclic nucleotide. J. Biochem. 153: 131-138.   DOI   ScienceOn
46 Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, et al. 2006. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J. 47: 851-863.   DOI   ScienceOn
47 Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, et al. 2002. The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J. Exp. Bot. 53: 1367-1376.   DOI   ScienceOn
48 Cano-Dominguez N, Alvarez-Delfin K, Hansberg W, Aguirre J. 2008. NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa. Eukaryot. Cell 7: 1352-1361.
49 Cheng YJ, Kim MD, Deng XP, Kwak SS, Chen W. 2013. Enhanced salt stress tolerance in transgenic potato plants expressing IbMYB1, a sweet potato transcription factor. J. Microbiol. Biotechnol. 23: 1737-1746.   DOI   ScienceOn
50 Choi H, Lee DG. 2013. The influence of the N-terminal region of antimicrobial peptide pleurocidin on fungal apoptosis. J. Microbiol. Biotechnol. 23: 1386-1394.   DOI   ScienceOn
51 Decoursey TE, Ligeti E. 2005. Regulation and termination of NADPH oxidase activity. Cell Mol. Life Sci. 62: 2173-2193.   DOI   ScienceOn
52 Delaunay A, Isnard AD, Toledano MB. 2000. $H_{2}O_{2}$ sensing through oxidation of the Yap1 transcription factor. EMBO J. 19: 5157-5166.   DOI   ScienceOn
53 Dunand C, Crevecoeur M, Penel C. 2007. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol. 174: 332-341.   DOI   ScienceOn
54 Eaton CJ, Jourdain I, Foster SJ, Hyams JS, Scott B. 2008. Functional analysis of a fungal endophyte stress-activated MAP kinase. Curr. Genet. 53: 163-174.   DOI
55 Egan MJ, Wang ZY, Jones MA, Smirnoff N, Talbot NJ. 2007. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc. Natl. Acad. Sci. USA 104: 11772-11777.   DOI   ScienceOn
56 Funato Y, Terabayashi T, Sakamoto R, Okuzaki D, Ichise H, Nojima H, et al. 2010. Nucleoredoxin sustains Wnt/betacatenin signaling by retaining a pool of inactive dishevelled protein. Curr. Biol. 20: 1945-1952.   DOI   ScienceOn
57 Giesbert S, Schurg T, Scheele S, Tudzynski P. 2008. The NADPH oxidase Cpnox1 is required for full pathogenicity of the ergot fungus Claviceps purpurea. Mol. Plant Pathol. 9: 317-327.   DOI   ScienceOn
58 Gutteridge JM. 1994. Antioxidants, nutritional supplements and life-threatening diseases. Br. J. Biomed. Sci. 51: 288-295.
59 Grant JJ, Yun BW, Loake GJ. 2000. Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J. 24: 569-582.   DOI   ScienceOn
60 Gupta R, Luan S. 2003. Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiol. 132: 1149-1152.   DOI   ScienceOn
61 Holmgren A, Lu J. 2010. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem. Biophys. Res. Commun. 396: 120-124.   DOI   ScienceOn
62 Kim EJ, Oh EK, Lee JK. 2014. Peroxidase and photoprotective activities of magnesium protoporphyrin IX. J. Microbiol. Biotechnol. 24: 36-43.   DOI   ScienceOn
63 Kim HJ, Chen C, Kabbage M, Dickman MB. 2011. Identification and characterization of Sclerotinia sclerotiorum NADPH oxidases. Appl. Environ. Microbiol. 77: 7721-7729.   DOI   ScienceOn
64 Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, et al. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22: 2623-2633.   DOI   ScienceOn
65 Lambeth JD. 2004. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4: 181-189.   DOI   ScienceOn
66 Lara-Ortiz T, Riveros-Rosas H, Aguirre J. 2003. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol. Microbiol. 50: 1241-1255.
67 Malagnac F, Lalucque H, Lepere G, Silar P. 2004. Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet. Biol. 41: 982-997.   DOI   ScienceOn
68 Bradley DJ, Kjellbom P, Lamb CJ. 1992. Elicitor- and woundinduced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70: 21-30.   DOI   ScienceOn
69 Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, et al. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442-446.   DOI   ScienceOn
70 Lessing F, Kniemeyer O, Wozniok I, Loeffler J, Kurzai O, Haertl A, Brakhage AA. 2007. The Aspergillus fumigatus transcriptional regulator AfYap1 represents the major regulator for defense against reactive oxygen intermediates but is dispensable for pathogenicity in an intranasal mouse infection model. Eukaryot. Cell 6: 2290-2302.   DOI   ScienceOn
71 Podder B, Song HY, Kim YS. 2014. Naringenin exerts cytoprotective effect against paraquat-induced toxicity in human bronchial epithelial BEAS-2B cells through NRF2 activation. J. Microbiol. Biotechnol. 24: 605-613.   DOI   ScienceOn
72 Scott B, Eaton CJ. 2008. Role of reactive oxygen species in fungal cellular differentiations. Curr. Opin. Microbiol. 11: 488-493.   DOI   ScienceOn
73 Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B. 2006. Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 18: 1052-1066.   DOI   ScienceOn
74 Torres MA, Dangl JL, Jones JD. 2002. Arabidopsis $gp91^{phox}$ homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99: 517-522.   DOI   ScienceOn
75 Zhang X, De Micheli M, Coleman ST, Sanglard D, Moye- Rowley WS. 2000. Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p. Mol. Microbiol. 36: 618-629.