• Title/Summary/Keyword: Fungal gene

Search Result 429, Processing Time 0.026 seconds

Genome-Wide Comparison of Carbohydrate-Active Enzymes (CAZymes) Repertoire of Flammulina ononidis

  • Park, Young-Jin;Kong, Won-Sik
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.349-360
    • /
    • 2018
  • Whole-genome sequencing of Flammulina ononidis, a wood-rotting basidiomycete, was performed to identify genes associated with carbohydrate-active enzymes (CAZymes). A total of 12,586 gene structures with an average length of 2009 bp were predicted by the AUGUSTUS tool from a total 35,524,258 bp length of de novo genome assembly (49.76% GC). Orthologous analysis with other fungal species revealed that 7051 groups contained at least one F. ononidis gene. In addition, 11,252 (89.5%) of 12,586 genes for F. ononidis proteins had orthologs among the Dikarya, and F. ononidis contained 8 species-specific genes, of which 5 genes were paralogous. CAZyme prediction revealed 524 CAZyme genes, including 228 for glycoside hydrolases, 21 for polysaccharide lyases, 87 for glycosyltransferases, 61 for carbohydrate esterases, 87 with auxiliary activities, and 40 for carbohydrate-binding modules in the F. ononidis genome. This genome information including CAZyme repertoire will be useful to understand lignocellulolytic machinery of this white rot fungus F. ononidis.

Specific and Sensitive Detection of Phoma glomerata Using PCR Techniques (PCR 기법을 이용한 Phoma glomerate 의 특이검출)

  • Yun, Yeo Hong;Suh, Dong Yeon;Kim, Hyun Ju;Kim, Seong Hwan
    • The Korean Journal of Mycology
    • /
    • v.41 no.1
    • /
    • pp.52-55
    • /
    • 2013
  • Phoma glomerata (Corda) Wollenw. & Hochapfel is a pathogenic fungus causing spot diseases of plant leaves and fruits. This fungus is important in plant quarantine of seedlings and fruits in Korea. The aim of this study was to develop a sensitive and effective diagnostic method for P. glomerata detection in imported plants. The fungal species-specific PCR primers were designed based on the nucleotide sequences of the translation elongation factor 1 alpha gene and their specificity and sensitivity were tested. The designed primers named as PhoGlo-F and PhoGlo-R amplified specifically a 170 bp sized DNA band of the target gene from the genomic DNA of P. glomerata. No amplicon was produced from genomic DNAs of 16 other Phoma spp. and reference fungal species tested. Moreover, PhoGlo-F/PhoGlo-R primers successfully worked with real-time PCR technique. The detection limit of DNA content by conventional and real-time PCR were 10 pg and 1pg of the genomic DNA of P. glomerata, respectively. We believed that the developed makers would be very useful for P. glomerata detection.

Nigrospora Species Associated with Various Hosts from Shandong Peninsula, China

  • Hao, Yuanyuan;Aluthmuhandiram, Janith V.S.;Chethana, K.W. Thilini;Manawasinghe, Ishara S.;Li, Xinghong;Liu, Mei;Hyde, Kevin D.;Phillips, Alan J.L.;Zhang, Wei
    • Mycobiology
    • /
    • v.48 no.3
    • /
    • pp.169-183
    • /
    • 2020
  • Nigrospora is a monophyletic genus belonging to Apiosporaceae. Species in this genus are phytopathogenic, endophytic, and saprobic on different hosts. In this study, leaf specimens with disease symptoms were collected from host plants from the Shandong Peninsula, China. The fungal taxa associated with these leaf spots were studied using morphology and phylogeny based on ITS, TEF1, and TUB2 gene regions. In this article, we report on the genus Nigrospora with N. gorlenkoana, N. oryzae, N. osmanthi, N. rubi, and N. sphaerica identified with 13 novel host associations including crops with economic importance such as bamboo and Chinese rose.

Expression of Fungal Phytase on the Cell Surface of Saccharomyces cerevisiae

  • Mo, Ae-Young;Park, Seung-Moon;Kim, Yun-Sik;Yang, Moon-Sik;Kim, Dae-Hyuk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.576-581
    • /
    • 2005
  • Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals, and reduces the phosphorus pollution of animal waste. We have engineered the cell surface of the yeast. Saccharomyces cerevisiae, by anchoring active fungal phytase on its cell wall, in order to apply it as a dietary supplement containing bioconversional functions in animal foods and a whole cell bio-catalyst for the treatment of waste. The phytase gene (phyA) of Aspergillus niger with a signal peptide of rice amylase 1A (Ramy1A) was fused with the gene encoding the C-terminal half (320 amino acid residues from the C-terminus) of yeast ${\alpha}-agglutinin$, a protein which is involved in mating and is covalently anchored to the cell wall. The resulting fusion construct was introduced into S. cerevisiae and expressed under the control of the constitutive glyceraldehydes-3-phosphate dehydrogenase (GPD) promoter. Phytase plate assay revealed that the surface-engineered cell exhibited a catalytically active opaque zone which was restricted to the margin of the colony. Additionally, the phytase activity was detected in the cell fraction, but was not detected in the culture medium when it was grown in liquid. These results indicate that the phytase was successfully anchored to the cell surface of yeast and was displayed as its active form. The amount of recombinant phytase on the surface of yeast cells was estimated to be 16,000 molecules per cell.

Structural Investigation and Homology Modeling Studies of Native and Truncated Forms of $\alpha$-Amylases from Sclerotinia sclerotiorum

  • Ben Abdelmalek, Imen;Urdaci, Maria Camino;Ali, Mamdouh Ben;Denayrolles, Muriel;Chaignepain, Stephane;Limam, Ferid;Bejar, Samir;Marzouki, Mohamed Nejib
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1306-1318
    • /
    • 2009
  • The filamentous ascomycete Sclerotinia sclerotiorum is well known for its ability to produce a large variety of hydrolytic enzymes. Two $\alpha$-amylases ScAmy54 and ScAmy43 predicted to play an important role in starch degradation were showed to produce specific oligosaccharides essentially maltotriose that have a considerable commercial interest. Primary structure of the two enzymes was established by N-terminal sequencing, MALDI-TOF masse spectrometry and cDNA cloning. The two proteins have the same N-terminal catalytic domain and ScAmy43 derived from ScAmy54 by truncation of 96 amino acids at the carboxyl-terminal region. Data of genomic analysis suggested that the two enzymes originated from the same $\alpha$-amylase gene and that truncation of ScAmy54 to ScAmy43 occurred probably during S. sclerotiorum cultivation. The structural gene of Scamy54 consisted of 9 exons and 8 introns, containing a single 1,500-bp open reading frame encoding 499 amino acids including a signal peptide of 21 residues. ScAmy54 exhibited high amino acid homology with other liquefying fungal $\alpha$-amylases essentially in the four conserved regions and in the putative catalytic triad. A 3D structure model of ScAmy54 and ScAmy43 was built using the 3-D structure of 2guy from A. niger as template. ScAmy54 is composed by three domains A, B, and C, including the well-known $(\beta/\alpha)_8$ barrel motif in domain A, have a typical structure of $\alpha$-amylase family, whereas ScAmy43 contained only tow domains A and B is the first fungal $\alpha$-amylase described until now with the smallest catalytic domain.

Unrecorded fungi isolated from Lentinula edodes cultivation houses in Korea (표고 재배사에서 분리한 국내 미기록 진균 보고)

  • Ahn, Geum Ran;Noh, Hyeungjin;Kim, Jun Young;Ko, Han Gyu;Kim, Seong Hwan
    • Journal of Mushroom
    • /
    • v.18 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • During the monitoring of fungal pests in 2016 and 2017, Acrodontium crateriforme, Naganishia friedmannii, Pestalotiopsis trachicarpicola, Penicillium wollemiicola, and Trichoderma thailandicum were isolated from indoor air, mushroom flies (Phytosciara flavipes), and media materials in the cultivation houses of oak wood mushroom (Lentinula edodes) located in Seocheon, Jangheung, Buyeo, and Yeoju, Korea. These fungal species were identified based on their morphological characteristics after their growth on PDA and subsequent molecular analyses of the 26S rDNA, 28S rDNA, β-tubulin gene, and translation elongation factor 1-α gene using PCR amplification and nucleotide sequencing were performed. The results showed that these fungi were previously undocumented in Korea. This study reports descriptions of their taxonomical and known properties.

Analysis of the MAT1-1 and MAT1-2 Gene Ratio in Black Koji Molds Isolated from Meju

  • Mageswari, Anbazhagan;Kim, Jeong-seon;Cheon, Kyu-Ho;Kwon, Soon-Wo;Yamada, Osamu;Hong, Seung-Beom
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.269-276
    • /
    • 2016
  • Aspergillus luchuensis is known as an industrially important fungal species used for making fermented foods such as awamori and shochu in Japan, makgeolli and Meju in Korea, and Pu-erh tea in China. Nonetheless, this species has not yet been widely studied regarding mating-type genes. In this study, we examined the MAT1-1 and MAT1-2 gene ratio in black koji molds (A. luchuensis, Aspergillus niger, and Aspergillus tubingensis) and in Aspergillus welwitschiae isolated from Meju, a fermented soybean starting material for traditional soy sauce and soybean paste in Korea. The number of strains with the MAT1-1 locus was 2 of 23 (A. luchuensis), 6 of 13 (A. tubingensis), 21 of 28 (A. niger), and 5 of 10 (A. welwitschiae). Fungal species A. tubingensis and A. welwitschiae showed a 1 : 1 ratio of MAT1-1 and MAT1-2 mating-type loci. In contrast, A. luchuensis revealed predominance of MAT1-2 (91.3%) and A. niger of MAT1-1 (75%). We isolated and identified 2 A. luchuensis MAT1-1 strains from Meju, although all strains for making shochu in Japan are of the MAT1-2 type. These strains may be a good resource for breeding of A. luchuensis to be used in the Asian fermented-food industry.

Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato

  • Rattana Pengproh;Thanwanit Thanyasiriwat;Kusavadee Sangdee;Juthaporn Saengprajak;Praphat Kawicha;Aphidech Sangdee
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.430-448
    • /
    • 2023
  • Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes.

Molecular Cloning and Characterization of a Flower-specific Thionin in Chinese Cabbage

  • Jung, Bae-Gyo;Choi, Yeon-Ok;Lee, Kyun-Oh;Chi, Yong-Hun;Kang, Soon-Suk;Lee, Seung-Sik;Park, Soo-Kwon;Lee, Jung-Ro;Lim, Chae-Oh;Lee, Sang-Yeol
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.201-205
    • /
    • 2001
  • Thionins are a family of low molecular weight cysteine-rich antimicrobial peptides. We isolated a cDNA encoding thionin gene from a flower bud cDNA library of Chinese cabbage (CFT). The gene contains 611 by nucleotides with 60 bp, and 150 by untranslated regions at its N- and C-terminal, respectively. The deduced amino acid sequence encoded 133 amino acids containing precursor polypeptide. The protein reveals that the precursor has a tripartite structure: a putative signal sequence at the N-terminus, followed by a mature thionin peptide, and a C-terminal acidic domain, which facilitates transport of the mature thionin through membrane. Genomic Southern blot analysis suggests that the CFT gene may be present as a single or two copy gene in the Chinese cabbage genome. Northern blot analysis shows that the gene is specifically expressed in flowers, but not in leaves, stems, or roots. When we analyzed the antifungal activity of the recombinant CFT protein, which was expressed in E. coli using the truncated cDNA region corresponding to the mature protein part, it was not active on fungal growth inhibition.

  • PDF

Cloning and molecular characterization of a new fungal xylanase gene from Sclerotinia sclerotiorum S2

  • Ellouze, Olfa Elleuch;Loukil, Sana;Marzouki, Mohamed Nejib
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.653-658
    • /
    • 2011
  • Sclerotinia sclerotiorum fungus has three endoxylanases induced by wheat bran. In the first part, a partial xylanase sequence gene (90 bp) was isolated by PCR corresponding to catalytic domains (${\beta}5$ and ${\beta}6$ strands of this protein). The high homology of this sequence with xylanase of Botryotinia fuckeliana has permitted in the second part to amplify the XYN1 gene. Sequence analysis of DNA and cDNA revealed an ORF of 746 bp interrupted by a 65 bp intron, thus encoding a predicted protein of 226 amino acids. The mature enzyme (20.06 kDa), is coded by 188 amino acid (pI 9.26). XYN1 belongs to G/11 glycosyl hydrolases family with a conserved catalytic domain containing $E_{86}$ and $E_{178}$ residues. Bioinformatics analysis revealed that there was no Asn-X-Ser/Thr motif required for N-linked glycosylation in the deduced sequence however, five O-glycosylation sites could intervene in the different folding of xylanses isoforms and in their secretary pathway.