Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.10.653

Cloning and molecular characterization of a new fungal xylanase gene from Sclerotinia sclerotiorum S2  

Ellouze, Olfa Elleuch (Biological Engineering Unit, National Institute of Applied Sciences and Technology (I.N.S.A.T.))
Loukil, Sana (Biological Engineering Unit, National Institute of Applied Sciences and Technology (I.N.S.A.T.))
Marzouki, Mohamed Nejib (Biological Engineering Unit, National Institute of Applied Sciences and Technology (I.N.S.A.T.))
Publication Information
BMB Reports / v.44, no.10, 2011 , pp. 653-658 More about this Journal
Abstract
Sclerotinia sclerotiorum fungus has three endoxylanases induced by wheat bran. In the first part, a partial xylanase sequence gene (90 bp) was isolated by PCR corresponding to catalytic domains (${\beta}5$ and ${\beta}6$ strands of this protein). The high homology of this sequence with xylanase of Botryotinia fuckeliana has permitted in the second part to amplify the XYN1 gene. Sequence analysis of DNA and cDNA revealed an ORF of 746 bp interrupted by a 65 bp intron, thus encoding a predicted protein of 226 amino acids. The mature enzyme (20.06 kDa), is coded by 188 amino acid (pI 9.26). XYN1 belongs to G/11 glycosyl hydrolases family with a conserved catalytic domain containing $E_{86}$ and $E_{178}$ residues. Bioinformatics analysis revealed that there was no Asn-X-Ser/Thr motif required for N-linked glycosylation in the deduced sequence however, five O-glycosylation sites could intervene in the different folding of xylanses isoforms and in their secretary pathway.
Keywords
Amino acid Sequence; Family G11; Sclerotinia sclerotiorum; Xylanase; 3D structure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Sapag, A., Wouters, J., Lambert, C., Ioannes, P., Eyzaguirre, J. and Depiereux, E. (2002) The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogentic relationships. J. Biotechnol. 95, 109-131.   DOI   ScienceOn
2 Brito, N., Espino, J. J. and Gonzalez, C. (2006) The endo-$\beta$-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. Mol. Plant Microbe Interact. 19, 25-32.   DOI   ScienceOn
3 Lubeck, P. S., Paulin, L., Degefu, Y., Lubeck, M., Alekhina, I., Bulat, S. A. and Collinge, D. B. (1997) PCR cloning, DNA sequencing and phylogenetic analysis of a xylanase gene from the phytopathogenic fungus Ascochyta pisi Lib Physiol. Molecular Plant Pathol. 51, 377-389.   DOI   ScienceOn
4 Kimura, T., Ito, J., Makino, A., Kondo, H., Karita, S., sakka, K. and Ohmiya, K. (2000) Purification, Characterization, and Molecular cloning of acidophilic Xylanase from Penicillium sp 40. Biosci. Biotechnol. Biochem. 64, 1230-1237.   DOI   ScienceOn
5 Gurr, S. J., Unkles, S. E., and Kinghoun, J. R. (1987) The structure and organization of nuclear genes of filamentous fungi: Gene Structure in Eukaryotic Microbe; in Gurr, S. J., Unkles, S. E. and Kinghoun, J. R. eds., pp. 93-139, IRL Press, Oxford.
6 Jalving, R., Bron, P., Kester, H. C. M., Visser, J. and Schaap, P. J. (2002) Cloning of a prolidase gene from Aspergillus nidulans and charcterisation of its product. Molec. Genetic Genomics 267, 218-222.   DOI
7 Brito, N., Espino, J. J. and Gonzalez, C. (2006) The endo-$\beta$-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. Mol. Plant Microbe Interact. 19, 25-32.   DOI   ScienceOn
8 Torronen, A., Harkki, A. and Rouvinen, J. (1994) Three dimensional structure of endo-1,4-L-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J. 13, 2493-2501
9 Boland, G. J. and Hall, R. (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 16, 93-108   DOI
10 Lumsden, R. D. (1969) Sclerotinia sclerotiorum infection of bean and the production of cellulase. Phytopathology 59, 653-657.
11 Riou, C., Freyssinet, G. and Fevre, M. (1991) Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. App. Environ. Microbiol. 57, 1478-1484.
12 Riou, C., Freyssinet, G. and Fevre, M. (1992) Purification and characterization of extracellular pectinolytic enzymes produced by Sclerotinia sclerotiorum. App. Environ. Microbiol. 58, 578-583
13 Poussereau, N., Creton, S., Billon-Grand, G., Rascle, C. and Fevre, M. (2001) Regulation of acp1, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology 147, 717-726.   DOI
14 Smaali, M. I., Gargouri, M., Legoy, M. D., Maugard, T., Limam, F. and Marzouki, M. N. (2003) A $\beta$-glucosidase from Sclerotinia sclerotiorum, Biochemical characterization and use in oligosaccharide Synthesis. App. Biochem. Biotechnol. 111, 1-15.   DOI
15 Ben Abdelmalek-Khedher, I., Camino-Urdaci, M., Limam, F., Schmitter, J. M., Marzouki, M. N. and Bressollier, P. (2008) Purification, Characterization and Partial Primary Sequence of a Major-Maltotriose-producing $\alpha$-Amylase, ScAmy43, from Sclerotinia sclerotiorum. J. Microbio. Biotechnol. 18, 1555-1563.
16 Ellouze, O., Mejri, M., Smaali, I., Limam, F. and Marzouki, M. N. (2007) Induction, properties and application of xylanase activity from Sclerotinia sclerotiorum S2 fungus. J. Food Biochem. 31, 1-137.   DOI   ScienceOn
17 Sunna, A. and Antranikian, G. (1997) Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39-67.   DOI
18 Annis, S. L. and Goodwin, P. H. (1997) Recent advances in the molecular genetics of plant cell wall-degrading enzymes in plant pathogenic fungi. Eur. J. Plant Pathol. 103, 1-14.   DOI   ScienceOn
19 Bolton, M. D., Thomma, B. P. H. J. and Nelson, B. D. (2006) Pathogen profile Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 7, 1-16.   DOI   ScienceOn
20 Gomez-Gomez, E., Ruiz-Roldan, M. C., Roncero, M. I. G., Di Pietro, A. and Hera, C. (2002) Role in pathogenesis of two endo-$\beta$-1,4 xylanase genes from the vascular wilt fungus Fusarium oxysporum. Fungal Genetics and Biology. 35, 2213-2224.
21 Gilbert, H. J. and Hazlwood, G. P. (1993) Bacterial cellulases and xylanases. J. General Microbiol. 139, 187-194   DOI
22 Hrmova, M., Biely, P., Vrsanka, M. and Petrakova, E. (1984) Induction of cellulose and xylan-degrading enzyme complex in yeast Trichosporon cutaneum. Arch. Microbiol. 161, 371-376.
23 Henrissat, B. and Bairoch, A. (1993) New families in the classification of glycosyl hydrolyses based on amino acid sequence similarities. Biochem. J. 293, 781-788.   DOI
24 Degefu, Y., Lohtander, K. and Paulin, L. (2004) Expression patterns and phylogenetic analysis of two xylanase genes (htxyl1 and htxyl2) from Helminthosporium turcicum, the cause of northern leaf blight of maize. Biochimie 86, 83-90.   DOI   ScienceOn
25 White, A., Tull, D., Johns, K., Withers, S. G. and Rose, D. R. (1996) Crystallographic observation of a covalent catalytic intermediate in a beta-glycosidase. Nature Struct. Biol. 3, 149-154.   DOI   ScienceOn
26 Torronen, A. and Rouvinen, J. (1997) Structural and functional properties of low molecular weight endo-1-4-$\beta$-xylanases. J. Biotechnol. 57, 137-149.   DOI   ScienceOn
27 Gomes, J., Gomes, I., Kreiner, W., Esterbauer, H., Sinner, M. and Steiner, W. (1993) Production of high level of cellulase- free and thermostable xylanase by a wild strain of Thermomyces lanuginosus using beechwood xylan. J. Biotechnol. 30, 283-297.   DOI   ScienceOn
28 Combet, C., Jambon, M., Deleage, G. and Geourjon, C. (2002) Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18, 213-214.   DOI   ScienceOn
29 Kaur, H. and Raghava, G. P. S. (2004) Role of evolutionary information in prediction of aromatic-backbone NH interactions in proteins. FEBS Lett. 564, 47-57.   DOI   ScienceOn
30 Al-samarrai, T. H. and Schmid, J. (2000) A simple method for extraction of fungal genomic DNA. Lett. App. Microbiol. 30, 53-56.   DOI   ScienceOn
31 Wagner, J. C., Escher, C. and Wolf, D. H. (1987) Some characteristics of hormones (pheromones) processing enzymes in Yeast. FEBS Lett. 218, 31-34.   DOI   ScienceOn
32 Spiro, R. G. (2002) Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptides bonds. Glycobiology 12, 43-56.   DOI   ScienceOn
33 Jalving, R., Van de Vondervoort, P. J. I., Visser, J. and Schaap, P. J. (2000) Characterization of the kexin-like maturase of Aspergillus niger. App. Environ. Microbiol. 66, 363-368.   DOI
34 Li, X. L. and Ljungdahl, L. G. (1994) Cloning sequencing and regulation of xylanase gene from the fungus Aureobasiduim pullulans Y2311-1 App. Environ. Microbiol. 59, 3212-3218.
35 Orlean, P. (1990) Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation and N glycosylation of protein in Saccharomyces cerevisiae. Mol. Cell Biol. 10, 5796-5805.   DOI
36 Temporini, C., Calleri, E., Massolin, G. and Caccialanza, G. (2008) Integrate analytical strategies for the study of phophorylation and glycosylation in proteins. Mass Spectrom. Rev. 27, 207-236.   DOI   ScienceOn
37 Balakrishnan, H., Satyanarayana, L., Gaikwad, S. M. and Suresh, C. G. (2006) Structural and active site modification studies implicate Glu, Trp and Arg in the activity of xylanase from alkalophilic Bacillus sp. (NCL 87-6-10). Enzym. Microbiol. Technol. 39, 67-73.   DOI   ScienceOn
38 Wakarchuk, W. W., Campbell, R., Sung, W. L., Davoodi, J. and Yaguchi, M. (1994) Mutational and crystallographic analysis of the active site residues of the Bacillus circulans xylanase. Protein Science 3, 467-475.
39 Ellouze, O., Fattouch, S., Mestiri, F., Aniba, M. R. and Marzouki, M. N. (2008) Optimization of extracellular xylanase production by Sclerotinia sclerotiorum S2 using factorial design. Indian J. Biochem. Biophys. 45, 404-405.