Browse > Article

Expression of Fungal Phytase on the Cell Surface of Saccharomyces cerevisiae  

Mo, Ae-Young (Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University)
Park, Seung-Moon (Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University)
Kim, Yun-Sik (Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University)
Yang, Moon-Sik (Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University)
Kim, Dae-Hyuk (Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.10, no.6, 2005 , pp. 576-581 More about this Journal
Abstract
Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals, and reduces the phosphorus pollution of animal waste. We have engineered the cell surface of the yeast. Saccharomyces cerevisiae, by anchoring active fungal phytase on its cell wall, in order to apply it as a dietary supplement containing bioconversional functions in animal foods and a whole cell bio-catalyst for the treatment of waste. The phytase gene (phyA) of Aspergillus niger with a signal peptide of rice amylase 1A (Ramy1A) was fused with the gene encoding the C-terminal half (320 amino acid residues from the C-terminus) of yeast ${\alpha}-agglutinin$, a protein which is involved in mating and is covalently anchored to the cell wall. The resulting fusion construct was introduced into S. cerevisiae and expressed under the control of the constitutive glyceraldehydes-3-phosphate dehydrogenase (GPD) promoter. Phytase plate assay revealed that the surface-engineered cell exhibited a catalytically active opaque zone which was restricted to the margin of the colony. Additionally, the phytase activity was detected in the cell fraction, but was not detected in the culture medium when it was grown in liquid. These results indicate that the phytase was successfully anchored to the cell surface of yeast and was displayed as its active form. The amount of recombinant phytase on the surface of yeast cells was estimated to be 16,000 molecules per cell.
Keywords
surface display; Aspergillus niger; phytase; Saccharomyces cerevisiae;
Citations & Related Records

Times Cited By Web Of Science : 11  (Related Records In Web of Science)
Times Cited By SCOPUS : 11
연도 인용수 순위
1 Wodzinski, R. J. and A. H. Ullah (1996) Phytase. Adv. Appl. Microbiol. 42: 263-302
2 Lim Y. Y., E. H. Park, J. H. Kim, S. M. Park, H. S. Jang, Y. J. Park, S. Yoon, M. S. Yang, and D. H. Kim (2001) Enhanced and targeted expression of fungal phytase in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 11: 915-921
3 Park, E. H., Y. M. Shin, Y. Y. Lim, T. H. Kwon, D. H. Kim, and M. S. Yang (2000) Expression of glucose oxidase by using recombinant yeast. J. Biotechnol. 81: 35-44   DOI   ScienceOn
4 Kim, M. J., T. H. Kwon, Y. S. Jang, M. S. Yang, and D. H. Kim (2000) Expression of murine GM-CSF in recombinant Aspergillus niger. J. Microbial. Biotechnol. 10: 287- 292
5 Heinonen, J. K. and R. J. Lahti (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal. Biochem. 113: 313-317   DOI   ScienceOn
6 Shibasaki, S., M. Ueda, T. Iizuka, M. Hirayama, Y. Ikeda, N. Kamasawa, M. Osumi, and A. Tanaka (2001) Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface of Saccharomyces cerevisiae by fluorometric and confocal laser scanning microscopic analyses. Appl. Microbiol. Biotechnol. 55: 471-475   DOI   ScienceOn
7 Ueda, M. and A. Tanaka (2000) Cell surface engineering of yeast: construction of arming yeast with biocatalytst. J. Biosci. Bioeng. 90: 125-136
8 Kondo, A. and M. Uda (2004) Yeast cell-surface displayapplications of molecular display. Appl. Microbiol. Biotechnol. 64: 28-40   DOI   ScienceOn
9 Han, Y., D. B. Wilson, and X. G. Lei (1999) Expression of an Aspergillus niger phytase gene (phyA) in, Saccharomyces cerevisiae. Appl. Environ. Microbiol. 65: 15-18
10 Ito, H., Y. Fukuda, K. Murata, and A. Kimura (1983) Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168
11 Park, S. M., A. Y. Mo, Y. S. Jang, J. H. Lee, M. S. Yang, and D. H. Kim (2004) Expression of a functional human Tumor Necrosis Factor (hTNF)-$\alpha$ in yeast Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 9: 292-296   DOI   ScienceOn
12 Yoon, S. J., Y. J. Choi, H. K. Min, K. K. Cho, J. W. Kim, S. C. Lee, and Y. H. Jung (1996) Isolation and identification of phytase-producing bacterium, Enterobacter sp.4, and enzymatic properties of phytase enzyme. Enzyme. Microb. Technol. 18: 449-454   DOI   ScienceOn
13 Nelson, T. S., T. R. Shieh, R. J. Wodzinski, and J. H. Ware (1971) Effect of supplemental phytase on the utilization of phytate phosphorus by chicks. J. Nutr. 101: 1289-1293   DOI
14 Sambrook, J., E. F. Fritsch, and T. Maniatis. (1989) Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA
15 Shon, J. H., E. S. Choi, B. H. Chung, D. J. Youn, and J. H. Seo (1995) Process development of the production of recombinant hirudin in Saccharomyces cerevisiae: from upstream to downstream. Proc. Biochem. 30: 653-660
16 Wyss, M., L. Pasamontes, A. Friedlein, R. Remy, M. Tessier, A. Kronenberger, A. Middendorf, M. Lehmann, L. Schnoebelen, U. Rothlisberger, E. Kusznir, G. Wahl, F. Muller, H. W. Lahm, K. Vogel, and A. P. van Loon (1999) Biophysical characterization of fungal phytases (myoinositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl. Environ. Microbiol. 65: 359-366
17 Kim, M. J., T. H. Kwon, Y. S. Jang, M. S. Yang, and D. H. Kim (2000) Expression of murine GM-CSF in recombinant Aspergillus niger. J. Microbial. Biotechnol. 10: 287- 292
18 Shin, Y. M., T. H. Kwon, K. S. Kim, K. S. Chae, D. H. Kim, J. H. Kim, and M. S. Yang (2001) Enhanced iron uptake of Saccharomyces cerevisiae by heterologous expression of a tadpole ferritin gene. Appl. Environ. Microbiol. 67: 1280-1283   DOI   ScienceOn
19 Cha, K. H., M. D. Kim, T. H. Lee, H. K. Lim, K. H. Jung, and J. H. Seo (2004) Selection of optimum expression system for production of kringle fragment of human apolipoprotein( a) in Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 9: 523-527   DOI   ScienceOn
20 Colby, D. W., B. A. Kellogg, C. P. Graff, Y. A. Yeung, J. S. Swers, and K. D. Wittrup (2004) Engineering antibody affinity by yeast surface display. Methods Enzymol. 388: 348-58   DOI   ScienceOn
21 Kondo, A., H. Shigechi, M. Abe, K. Uyama, T. Matsumoto, S. Takahashi, M. Ueda, A. Tanaka, M. Kishimoto, and H. Fukuda (2002) High level production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell surface glucoamylase. Appl. Microbiol. Biotechnol. 58: 291-296   DOI   ScienceOn
22 Kim, C. H., K. J. Rao, D. J. Youn, and S. K. Rhee (2003) Scale-up of recombinant hirudin production from Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 8: 303-305   DOI   ScienceOn
23 Fujita, Y., S. Takahashi, M. Ueda, A. Tanaka, H. Okada, Y. Morikawa, T. Kawaguchi, M. Arai, H. Fukuda, and A. Kondo (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl. Environ. Microbiol. 68: 5136-5141   DOI   ScienceOn
24 Boder, E. T. and K. D. Wittrup (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15: 553-557   DOI   ScienceOn