• Title/Summary/Keyword: Fungal fermentation

Search Result 174, Processing Time 0.021 seconds

Microbial Diversity during Fermentation of Sweet Paste, a Chinese Traditional Seasoning, Using PCR-Denaturing Gradient Gel Electrophoresis

  • Mao, Ping;Hu, Yuanliang;Liao, Tingting;Wang, Zhaoting;Zhao, Shumiao;Liang, Yunxiang;Hu, Yongmei
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.678-684
    • /
    • 2017
  • The aim of this study was to elucidate the changes in the microbial community and biochemical properties of a traditional sweet paste during fermentation. PCR-denaturing gradient gel electrophoresis (DGGE) analysis showed that Aspergillus oryzae was the predominant species in the koji (the fungal mixture), and the majority of the fungi isolated belonged to two Zygosaccharomyces species in the mash. The bacterial DGGE profiles revealed the presence of Bacillus subtilis during fermentation, and Lactobacillus acidipiscis, Lactobacillus pubuzihii, Lactobacillus sp., Staphylococcus kloosi, and several uncultured bacteria were also detected in the mash after 14 days of main fermentation. Additionally, during main fermentation, amino-type nitrogen and total acid increased gradually to a maximum of $6.77{\pm}0.25g/kg$ and $19.10{\pm}0.58g/kg$ (30 days) respectively, and the concentration of reducing sugar increased to $337.41{\pm}3.99g/kg$ (7 days). The 180-day fermented sweet paste contained $261.46{\pm}19.49g/kg$ reducing sugar and its pH value remained at around 4.65. This study has used the PCR-DGGE technique to demonstrate the microbial community (including bacteria and fungi) in sweet paste and provides useful information (biochemical properties) about the assessment of the quality of sweet paste throughout fermentation.

Cyclo(Dehydrohistidyl-L-Tryptophyl), an Inhibitor of Nitric Oxide Production from a Fungal Strain, Fb956

  • Noh, Hyun-Jeong;Sohn, Mi-Jin;Yu, Hyung-Eun;Yoo, Ick-Dong;Kim, Won-Gon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1717-1720
    • /
    • 2007
  • In the course of screening for nitric oxide inhibitors in activated microglial BV-2 cells, cyclo(dehydrohistidyl-L-tryptophyl) was isolated from solid-state fermentation cultures of an unidentified fungal strain, Fb956. Its structure was determined by spectroscopic methods including 2D NMR and chiral TLC analyses. Cyclo(dehydrohistidyl-L-tryptophyl) was found to have an inhibitory activity on nitric oxide production with an $IC_{50}$ of $6.5\;{\mu}M$ in activated BV-2 cells. The structure determination and biological activity of cyclo(dehydrohistidyl-L-tryptophyl) was reported for the first time in this study.

Functional Characterization of Antagonistic Fluorescent Pseudomonads Associated with Rhizospheric Soil of Rice (Oryza sativa L.)

  • Ayyadurai, N.;Naik, P. Ravindra;Sakthivel, N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.919-927
    • /
    • 2007
  • Antagonistic fluorescent pseudomonads isolated from rhizospheric soil of rice were characterized by 16S rRNA amplicon and fatty acid methyl ester (FAME) analyses. Antagonistic isolates were grown in the fermentation media, and production of antibiotics was confirmed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Production of fungal cell-wall-degrading enzymes such as protease, cellulase, pectinase, and chitinase was determined. Dendrogram based on the major and differentiating fatty acids resulted into 5 clusters, viz., cluster I (P. pseudoalcaligenes group), cluster II (P. plecoglossicida group), cluster III (P. fluorescens group), cluster IV (P. aeruginosa group), and cluster V (P. putida group). Characteristic presence of high relative proportions of cyclopropane (17:0 CYCLO w7c) was observed in antagonistic bacteria. Data revealed biodiversity among antagonistic fluorescent pseudomonads associated with the rice rhizosphere. Results presented in this study will help to identify the antagonistic isolates and to determine their mechanisms that mediate antagonism against fungal pathogens of rice.

Peroxidase-mediated Formation of the Fungal Polyphenol 3,14'-Bihispidinyl

  • Lee, In-Kyoung;Yun, Bong-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.107-109
    • /
    • 2008
  • Medicinal fungi, Phellinus linteus and Inonotus xeranticus, produce a cluster of yellow pigment in their fermentation broth that acts as an important element of biological activity. The pigment is composed of diverse polyphenols with a styrylpyrone moiety, mainly hispidin and its dimers, 3,14'-bihispidinyl, hypholomine B, and 1,1-distyrylpyrylethan. Although dimeric hispidins were proposed to be biosynthesized from two molecules of monomer via oxidative coupling by ligninolytic enzymes, laccase and peroxidase, the details of this process remain unknown. In this preliminary study, we attempted to achieve enzymatic synthesis of the hispidin dimer from hispidin by using commercially available horseradish peroxidase (HRP). Consequently, a hispidin dimer, 3,14'-bihispidinyl, was synthesized, whereas the other dimers, hypholomine B and 1,1-distyrylpyrylethan, were not produced. This result suggested that the oxidative coupling at the C-3 and C-14' positions of hispidins was dominant in the process of dimerization by HRP, and indicated that additional catalysts or substrates would be needed to synthesize other hispidin dimers present in the fungal metabolite.

The Origin of Meju Fungi - Fungal Diversity of Soybean, Rice Straw and Air for Meju Fermentation

  • Kim, Dae-Ho;Lee, Jong-kyu;Hong, Seung-Beom
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.32-32
    • /
    • 2014
  • Meju is a brick of dried fermented soybeans and is the core material for Jang such as Doenjang and Ganjang. Jang is produced by addition of salty water to Meju and is considered the essential sauces of authentic Korean cuisine. Meju is fermented by diverse microorganisms such as bacteria, fungi and yeasts. It is known that fungi play an important role in the Meju fermentation and they degrade macromolecules of the soybeans into small nutrient molecules. In previous study, 26 genera and 0 species were reported as Meju fungi. However, it is not comprehensively examined where the fungi present on the Meju are originated. In order to elucidate the origin of the fungi present on the Meju, the mycobiota of 500 samples soybean kernels, 296 rice straw pieces and air samples of Jang factories was determined in 0, 2 and 7 Jang factories respectively. Forty-one genera covering 86 species were isolated from the soybeans and 33 species were identical with the species from Meju. From sodium hypochlorite untreated soybeans, Eurotium herbariorum, Eurotium repens, Cladosporium tenuissimum, Fusarium fujikuroi, Aspergillus oryzae/flavus and Penicillium steckii were the predominant species. In case of sodium hypochlorite-treated soybeans, Eurotium herbariorum, E. repens and Cladosporium tenuissimum were the predominant species. Of the 4 genera and 86 species isolated from soybeans, 3 genera and 33 species were also found in Meju. Thirty-nine genera and 92 species were isolated from the rice straws and 40 species were identical with the species from Meju. Fusarium asiaticum, Cladosporium cladosporioides, Aspergillus tubingensis, A. oryzae, E. repens and Eurotium chevalieri were frequently isolated from the rice straw obtained from many factories. Twelve genera and 40 species of fungi that were isolated in the rice straw in this study, were also isolated from Meju. Especially, A. oryzae, C. cladosporioides, E. chevalieri, E. repens, F. asiaticum and Penicillium polonicum that are abundant species in Meju, were also isolated frequently from rice straw. C. cladosporioides, F. asiaticum and P. polonicum that are abundant in low temperature fermentation process of Meju fermentation, were frequently isolated from rice straw incubated at $5^{\circ}C$ and $25^{\circ}C$, while A. oryzae, E. repens and E. chevalieri that are abundant in high temperature fermentation process of Meju fermentation, were frequently isolated from rice straw incubated at $25^{\circ}C$ and $35^{\circ}C$. This suggests that the mycobiota of rice straw have a large influence in mycobiota of Meju. Thirty-nine genera and 92 species were isolated from the air of Jang factories and 34 species were identical with the species from Meju. In outside air of the fermentation room, Cladosporium sp. and Cladosporium cladosporioides were the dominant species, followed by Cladosporium tenuissimum, Eurotium sp., Phoma sp. Sistotrema brinkmannii, Alternaria sp., Aspergillus fumigatus, Schizophyllum commune, and Penicillium glabrum. In inside air of the fermentation room, Cladosporium sp., Aspergillus oryzae, Penicillium chrysogenum, A. nidulans, Aspergillus sp., C. cladosporioides, Eurotium sp., Penicillium sp., C. tenuissimum, A. niger, E. herbariorum, A. sydowii, and E. repens were collected with high frequency. The concentrations of the genus Aspergillus, Eurotium and Penicillium were significantly higher in inside air than outside air. From this results, the origin of fungi present on Meju was inferred. Of the dominant fungal species present on Meju, Lichtheimia ramosa, Mucor circinelloides, Mucor racemosus, and Scopulariopsis brevicaulis are thought to be originated from outside air, because these species are not or are rarely isolated from rice straw and soybean; however, they were detected outside air of fermentation room and are species commonly found in indoor environments. However, A. oryzae, P. polonicum, E. repens, P. solitum, and E. chevalieri, which are frequently found on Meju, are common in rice straw and could be transferred from rice straw to Meju. The fungi grow and produce abundant spores during Meju fermentation, and after the spores accumulate in the air of fermentation room, they could influence mycobiota of Meju fermentation in the following year. This could explain why concentrations of the genus Aspergillus, Eurotium, and Penicillium are much higher inside than outside of the fermentation rooms.

  • PDF

Safety Evaluation of Filamentous Fungi Isolated from Industrial Doenjang Koji

  • Lee, Jin Hee;Jo, Eun Hye;Hong, Eun Jin;Kim, Kyung Min;Lee, Inhyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1397-1404
    • /
    • 2014
  • A few starters have been developed and used for doenjang fermentation but often without safety evaluation. Filamentous fungi were isolated from industrial doenjang koji, and their potential for mycotoxin production was evaluated. Two fungi were isolated; one was more dominantly present (90%). Both greenish (SNU-G) and whitish (SNU-W) fungi showed 97% and 95% internal transcribed spacer sequence identities to Aspergillus oryzae/flavus, respectively. However, the SmaI digestion pattern of their genomic DNA suggested that both belong to A. oryzae. Moreover, both fungi had morphological characteristics similar to that of A. oryzae. SNU-G and SNU-W did not form sclerotia, which is a typical characteristic of A. oryzae. Therefore, both fungi were identified to be A. oryzae. In aflatoxin gene cluster analysis, both fungi had norB-cypA genes similar to that of A. oryzae. Consistent with this, aflatoxins were not detected in SNU-G and SNU-W using ammonia vapor, TLC, and HPLC analyses. Both fungi seemed to have a whole cyclopiazonic acid (CPA) gene cluster based on PCR of the maoA, dmaT, and pks-nrps genes, which are key genes for CPA biosynthesis. However, CPA was not detected in TLC and HPLC analyses. Therefore, both fungi seem to be safe to use as doenjang koji starters and may be suitable fungal candidates for further development of starters for traditional doenjang fermentation.

Producing Alkaline Lipase by Fusarium oxysporum Using Unconventional Medium Components

  • Quadros, Cedenir Pereira de;Bicas, Juliano Lemos;Neri-Numa, Iramaia Angelica;Pastore, Glaucia Maria
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1519-1522
    • /
    • 2009
  • This study reports the use of different inducing agents (olive, soybean, and used frying oils) and culture mediums [synthetic medium (SM), whey protein, and corn steep liqueur (SL)] to optimize the production of lipase by Fusarium oxysporum. A relationship among the inoculum size, presence of a fat source, fungal growth, and lipase production was evident during the fermentation. The best results were achieved when the inoculum was grown in SM or SL and the fermentation was developed in SM with frying oil as the inducing agent. The maximum activity (about 15 U/mL) was obtained after a 72 hr cultivation.

Reverse Micellar Extraction of Fungal Glucoamylase Produced in Solid-State Fermentation Culture

  • Paraj, Aliakbar;Khanahmadi, Morteza;Karimi, Keikhosro;Taherzadeh, Mohammad J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1690-1698
    • /
    • 2014
  • Partial purification of glucoamylase from solid-state fermentation culture was, firstly, investigated by reverse micellar extraction (RME). To avoid back extraction problems, the glucoamylase was kept in the original aqueous phase, while the other undesired proteins/enzymes were moved to the reverse micellar organic phase. The individual and interaction effects of main factors (i.e., pH and NaCl concentration in the aqueous phase, and concentration of sodium bis-2-ethyl-hexyl-sulfosuccinate (AOT) in the organic phase) were studied using response surface methodology. The optimum conditions for the maximum recovery of the enzyme were pH 2.75, 100 mM NaCl, and 200 mM AOT. Furthermore, the optimum organic to aqueous volume ratio ($V_{org}/V_{aq}$) and appropriate number of sequential extraction stages were 2 and 3, respectively. Finally, 60% of the undesired enzymes including proteases and xylanases were removed from the aqueous phase, while 140% of glucoamylase activity was recovered in the aqueous phase and the purification factor of glucoamylase was found to be 3.0-fold.

Characterization of Nonaflatoxigenic Aspergillus flavus/oryzae Strains Isolated from Korean Traditional Soybean Meju

  • Sang-Cheol Jun;Yu-Kyung Kim;Kap-Hoon Han
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.408-419
    • /
    • 2022
  • Filamentous fungi that could be classified into Aspergillus flavus/oryzae were isolated from traditionally fermented meju commercially available in Korea. The samples were analyzed for aflatoxin B1 and ochratoxin A contamination by HPLC; however, no toxin was detected. In addition, fungal and bacterial metagenomic sequencing were performed to analyze the microbial distribution in the samples. The results revealed that the distribution and abundance of fungi and bacteria differed considerably depending on the production regions and fermentation conditions of the meju samples. Through morphological analysis, ITS region sequencing, and assessment of the aflatoxin-producing ability, a total of 32 A. flavus/oryzae strains were identified. PCR analysis of six regions with a high mutation frequency in the aflatoxin gene cluster (AGC) revealed a total of six types of AGC breaking point patterns. The A. flavus/oryzae strains did not exhibit the high amylase activity detected in the commercial yellow koji strain (starter mold). However, their peptidase and lipase activities were generally higher than that of the koji isolates. We verified the safety of the traditionally fermented meju samples by analyzing the AGC breaking point pattern and the enzyme activities of A. flavus/oryzae strains isolated from the samples. The isolated strains could possibly be used as starter molds for soybean fermentation.

Effects of Successive Organic Wastes Treatment on Fungal Flora in Agricultural Upland Lysimeter (유기성폐기물 연용이 토양 내 진균 분포에 미치는 영향)

  • Lee, Kang-Hyo;Weon, Hang-Yeon;Seok, Soon-Ja;Jang, Kab-Yeul;Kwon, Soon-Ik;Kim, Seung-Hwan;Kim, Wan-Gyu
    • The Korean Journal of Mycology
    • /
    • v.36 no.2
    • /
    • pp.116-122
    • /
    • 2008
  • Fungal floras were investigated for the lysimeter soil treated with municipal sewage sludge (MSS), pig manure compost (PMC), industrial sewage sludge (ISS), leather processing sludge (LS), and alcohol fermentation processing sludge (FS). Fungal populations were higher in the FS, ISS, LS, or MSS-treated soil than in the chemical fertilizer-treated soil. Isolated fungi from the sewage sludge were identified as Penicillium spp., Gliocladium spp., Acremonium spp., Trichoderma spp., Aspergillus spp., Blastomyces spp., and Phoma spp.