• Title/Summary/Keyword: Fungal development

Search Result 530, Processing Time 0.025 seconds

Effect of Grass Lipids and Long Chain Fatty Acids on Cellulose Digestion by Pure Cultures of Rumen Anaerobic Fungi, Piromyces rhizinflata B157 and Orpinomyces joyonii SG4

  • Lee, S.S.;Ha, J.K.;Kim, K.H.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2000
  • The effects of grass lipids and long chain fatty acids (LCFA; palmitic, stearic and oleic acids), at low concentrations (0.001~0.02%), on the growth and enzyme activity of two strains of anaerobic fungi, monocentric strain Piromyces rhizinflata B157 and polycentric strain Orpinomyces joyonii SG4, were investigated. The addition of grass lipids to the medium significantly (p<0.05) decreased filter paper (FP) cellulose digestion, cellulase activity and fungal growth compared to control treatment. However, LCFA did not have any significant inhibitory effects on fungal growth and enzyme activity, which, however, were significantly (p<0.05) stimulated by the addition of oleic acid as have been observed in rumen bacteria and protozoa. This is the first report to our knowledge on the effects of LCFA on the rumen anaerobic fungi. Continued work is needed to identify the mode of action of LCFA in different fungal strains and to verify whether these microorganisms have ability to hydrogenate unsaturated fatty acids to saturated fatty acids.

Novel Approaches for Efficient Antifungal Drug Action

  • Lee, Heejeong;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1771-1781
    • /
    • 2018
  • The emergence of multidrug-resistant microorganisms, as well as fungal infectious diseases that further threaten health, especially in immunodeficient populations, is a major global problem. The development of new antifungal agents in clinical trials is inferior to the incidence of drug resistance, and the available antifungal agents are restricted. Their mechanisms aim at certain characteristics of the fungus in order to avoid biological similarities with the host. Synthesis of the cell wall and ergosterol are mainly targeted in clinical use. The need for new approaches to antifungal therapeutic agents or development alternatives has increased. This review explores new perspectives on mechanisms to effectively combat fungal infections and effective antifungal activity. The clinical drug have a common feature that ultimately causes caspase-dependent cell death. The drugs-induced cell death pathway is associated with mitochondrial dysfunction, including mitochondrial membrane depolarization and cytochrome c release. This mechanism of action also reveals antimicrobial peptides, the primary effector molecules of innate systems, to highlight new alternatives. Furthermore, drug combination therapy is suggested as another strategy to combat fungal infection. The proposal for a new approach to antifungal agents is not only important from a basic scientific point of view, but will also assist in the selection of molecules for combination therapy.

Morphological Characteristics of Conidiogenesis in Cordyceps militaris

  • Shrestha, Bhushan;Han, Sang-Kuk;Yoon, Kwon-Sang;Sung, Jae-Mo
    • Mycobiology
    • /
    • v.33 no.2
    • /
    • pp.69-76
    • /
    • 2005
  • Conidial development of Cordyceps militaris was observed from germinating ascospores and vegetative hyphae through light and scanning electron microscopy (SEM). Ascospores were discharged from fresh specimens of C. militaris in sterile water as well as Sabouraud Dextrose agar plus Yeast Extract (SDAY) plates. We observed ascospore germination and conidial formation periodically. Under submerged condition in sterile water, most part-spores germinated unidirectionally and conidia were developed directly from the tips of germinating hyphae of part-spores within 36 h after ascospore discharge, showing microcyclic conidiation. First-formed conidia were cylindrical or clavate followed by globose and ellipsoidal ones. Germination of ascospores and conidial development were observed on SDAY agar by SEM. Slimy heads of conidia on variously arranged phialides, from solitary to whorl, developed 5 days after ascospore discharge. Besides, two distinct types of conidia, elongated pyriform or cylindrical and globose, were observed in the same slimy heads by SEM. Conidia were shown to be uninucleate with 4,6-diamidino-2-phenylindole staining. Conidiogenous cells were more slender than vegetative hyphae, having attenuated tips. Microcyclic conidiation, undifferentiated conidiogenous hyphae (phialides), polymorphic conidia and solitary, opposite to whorled type of phialidic arrangement are reported here as the characteristic features of asexual stage of C. militaris, which can be distinguished from other Cordyceps species.

Natural Occurrence of Mycotoxin and Fungi in Korean Rice (국내산 미곡에 발생하는 곰팡이와 곰팡이독소)

  • Lee, Theresa;Lee, Soohyung;Lee, Jeong-Hwa;Yun, Jong-Chul;Oh, Kyeong-Suk
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.261-267
    • /
    • 2012
  • Inspection of deteriorated rices in Korea for fungal occurrence revealed that Aspergillus was the most frequently observed genus and some isolates of the Aspergillus spp. turned out to produce aflatoxin. Diverse fungal genera including Fusarium, Aspergillus, Penicillium, or Alternaria spp. were observed in most of the rice samples. Aflatoxin occurred infrequently and the levels of aflatoxin present in the rice samples were lower than regulatory limit but Fusarium toxins such as deoxynivalenol, nivalenol, zearalenone, and fumonisin occurred frequently. In rice processing complexes, fungal and mycotoxin contamination of rice decreased by milling process, resulting in the lowest level of mycotoxin and fungi in polished rice. Currently, it appears that Korean rice and milled by-products need a safety control for Fusarium toxins rather than aflatoxin.

Isolation of a Pestalotiopsis Species Degrading Mucilage from Fruit of Opuntia ficus-indica var. Saboten

  • Huh, Yoon-Hee;Ko, Young-Hwan
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.221-226
    • /
    • 2007
  • The high molecular-weight mucilage extracted and purified from cactus fruit of Opuntia ficus-indica var. Saboten was degraded by the cell-free culture filtrate of a fungus isolated from soil. TLC analysis of the polymeric mucilage after incubation with the fungal culture filtrate confirmed its degradation. When the degradation products were tested for their qualitative reactions with ninhydrin and phenol-sulfuric acid, only phenol-sulfuric acid gave positive development, and ninhydrin did not show any observable color reaction. This coloring reaction suggested the presence of a carbohydrate without an amino group within the mucilage. Analyses by HPLC and liquid gel permeation chromatography on sephadex G-100 also provided additional information on degradation of the mucilage by the fungal culture filtrate. The sequences of ITS-5.8S rDNA from the fungal isolate that was cultivated for the preparation of mucilage-degrading enzyme showed 99% similarity to those of Pestalotiopsis aquatica.

Isolation and Identification of Activated Microorganisms for Biocide Development (생물농약개발을 위한 활성미생물의 분리동정에 관한 연구)

  • Lee, Jang-Hoon;Kang, Byeong-Kon;Kwon, Hyuk-Ku;Jung, Joon-Oh;Nam, Youn-Ku
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.31-38
    • /
    • 2005
  • An anti-fungal material produced by actinomycetes was isolated from domestic soil. This actinomycetes was identified as Streptomyces albogriseus by 16S rDNA sequence. YEME (yeast extract 4 g, malt extract 10 g, glucose 4 g, D.W 1l, pH 7.00.2) medium was used for production of anti-fungal materials. S. albogriseus was cultured in a shaking incubator for 2 weeks at 150 rpm and $25^{\circ}C$. An anti-fungal material produced by S. albogriseus was identified at 340 nm by uv/vis- spectrometer and it showed powerful anti-fungal activity. This is the first report that secondary metabolite produced by S. albogriseus showed an activity against phytopathogenic fungi such as Collectrichum coccodes, Botrytis cinerea, Cladosporium cucumerinum, Didymella bryoniae.

Isolation of Fungal Pathogens to an Edible Mushroom, Pleurotus eryngii, and Development of Specific ITS Primers

  • Kim, Sang-Woo;Kim, Sinil;Lee, Hyun-Jun;Park, Ju-Wan;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.252-255
    • /
    • 2013
  • Fungal pathogens have caused severe damage to the commercial production of Pleurotus eryngii, the king oyster mushroom, by reducing production yield, causing deterioration of commercial value, and shortening shelf-life. Four strains of pathogenic fungi, including Trichoderma koningiopsis DC3, Phomopsis sp. MP4, Mucor circinelloides MP5, and Cladosporium bruhnei MP6, were isolated from the bottle culture of diseased P. eryngii. A species-specific primer set was designed for each fungus from the ITS1-5.8S rDNA-ITS2 sequences. PCR using the ITS primer set yielded a unique DNA band for each fungus without any cross-reaction, proving the validity of our method in detection of mushroom fungal pathogens.

The role and characterization of .betha.-1, 3-glucanase in biocontrol of fusarium solani by pseudomonas stutzeri YPL-1

  • Lim, Ho-Seong;KiM, Sang-Dal
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.295-301
    • /
    • 1995
  • An antifungal Pseudomonas stutzeri YPL-1 produced extracellular chitinase and .betha.-1, 3-glucanase that were key enzymes in the decomposition of fungal hyphal walls. These lytic extracellular enzymes markedly inhibited mycelial growth of the phytopathogenic fungus Fusarium solani. A chitinase from P. stutzeri YPL-1 inhibited fungal mycelial growth by 87%, whereas a .betha.-1, 3-glucanase from the bacterium inhibited growth by 53%. Furthermore, co-operative action of the enzymes synergistically inhibited 95% of the fungal growth. The lytic enzymes caused absnormal swelling and retreating on the fungal hyphal walls in a dual cultures. Scanning electron microscopy clearly showed hyphal degradation of F. solani in the regions interacting with P. stutzeri YPL-1. In an in vivo pot test, P. stutzeri YPL-1 proved to have biocontrol ability as a powerful agent in controlling plant disease. Planting of kidney bean (Phaseolus vulgaris L.) seedlings with the bacterial suspension in F. solani-infested soil significantly suppressed the development of fusarial root-rot. The characteristics of a crude preparation of .betha.-1, 3-glucanase produced from P. stutzeri YPL-1 were investigated. The bacterium detected after 2 hr of incubation. The enzyme had optimum temperature and pH of 40.deg.C and pH 5.5, respectively. The enzyme was stable in the pH range of 4.5 to 7.0 and at temperatures below 40.deg.C, with a half-life of 40 min at 60.deg.C.

  • PDF