• Title/Summary/Keyword: Fundamental frequency switching

Search Result 61, Processing Time 0.033 seconds

Non-equal DC link Voltages in a Cascaded H-Bridge with a Selective Harmonic Mitigation-PWM Technique Based on the Fundamental Switching Frequency

  • Moeini, Amirhossein;Iman-Eini, Hossein;Najjar, Mohammad
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.106-114
    • /
    • 2017
  • In this paper, the Selective Harmonic Mitigation-PWM (SHM-PWM) method is used in single-phase and three-phase Cascaded H-Bridge (CHB) inverters in order to fulfill different power quality standards such as EN 50160, CIGRE WG 36-05, IEC 61000-3-6 and IEC 61000-2-12. Non-equal DC link voltages are used to increase the degrees of freedom for the proposed SHM-PWM technique. In addition, it will be shown that the obtained solutions become continuous and without sudden changes. As a result, the look-up tables can be significantly reduced. The proposed three-phase modulation method can mitigate up to the 50th harmonic from the output voltage, while each switch has just one switching in a fundamental period. In other words, the switching frequency of the power switches are limited to 50 Hz, which is the lowest switching frequency that can be achieved in the multilevel converters, when the optimal selective harmonic mitigation method is employed. In single-phase mode, the proposed method can successfully mitigate harmonics up to the 50th, where the switching frequency is 150 Hz. Finally, the validity of the proposed method is verified by simulations and experiments on a 9-level CHB inverter.

A New Scheme for Maintaining Balanced DC Voltages in Static Var Compensator(SVC) Using Cascade Multilevel Inverter

  • Min, Wan-Ki;Min, Joon-Ki;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.561-565
    • /
    • 2001
  • This paper proposes a new switching scheme of a static var compensator(SVC) with cascade multilevel inverter which employs H-bridge inverter(HBI). To improve the un­balanced problem of the DC capacitor voltages, the rotated switching scheme of fundamental frequency is newly used. The optimized fundamental switching pattern with low switching frequency is adapted to be suitable for high application. The selective harmonic elimination method(SHEM) allows to keep the total harmonic distortion(THD) low in the output voltage of multilevel inverter. The SVC system is modeled using the d-q transform which calculates the instantaneous reactive power. This model is used to design a controller and analyze the SVC system. Simulated and experimental results are also presented and discussed to validate the proposed schemes.

  • PDF

A New Control Scheme for Maintaining Balanced DC Voltages in Static Var Compensator(SVC) Using Cascade Multilevel Inverter (직렬형 멀티레벨 인버터를 사용한 무효전력보상장치의 직류전압평형을 위한 새로운 제어기법)

  • Min, Wan-Ki;Min, Joon-Ki;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.179-184
    • /
    • 2005
  • This paper examines the application of high voltage static var compensator(SVC) with cascade multilevel inverter which employs H-bridge inverter(HBI). A new switching scheme is developed for the SVC system. To improve the unbalanced problem of the DC capacitor voltages, the rotated switching scheme of fundamental frequency is newly used. The optimized fundamental switching pattern with low switching frequency is adapted to be suitable for high application. The selective harmonic elimination method(SHEM) allows to keep the total harmonic distortion(THD) low in the output voltage of multilevel inverter. The SVC system is modeled using the d-q transform which calculates the instantaneous reactive power. This model is used to design a controller and analyze the SVC system. Simulated and experimental results are also presented and discussed to validate the proposed schemes.

Multi-step Modulation Techniques in PWM Inverter for a Variable-Speed Induction Motor Driving (가변속 유도전동기의 구동을 위한 PWM인버터의 다단변조 기법)

  • 박충규;정헌상;김국진;정을기;손진근
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.6
    • /
    • pp.32-41
    • /
    • 1992
  • In this paper, an advanced Pulse Width Modulation Inverter strategy for driving a variable-speed induction motor is introduced. A switching pattern making use of the near-proportionality of voltage and frequency in AC machines operating with constant flux was computed. At low magnitudes and ow frequencies of the fundamental, many more harmonics are eliminated than at high magnitudes and frequencies. In order to keep the inverter switching frequency constant over the output frequency range, the chopping frequency is diminished as the frequency of the fundamental increases. Using these modulation strategy, the harmonics components of PWM inverter are efficiently eliminated.

  • PDF

Design Guidelines for a Capacitive Wireless Power Transfer System with Input/Output Matching Transformers

  • Choi, Sung-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1656-1663
    • /
    • 2016
  • A capacitive wireless power transfer (C-WPT) system uses an electric field to transmit power through a physical isolation barrier which forms a pair of ac link capacitors between the metal plates. However, the physical dimension and low dielectric constant of the interface medium severely limit the effective link capacitance to a level comparable to the main switch output capacitance of the transmitting circuit, which thus narrows the soft-switching range in the light load condition. Moreover, by fundamental limit analysis, it can be proved that such a low link capacitance increases operating frequency and capacitor voltage stress in the full load condition. In order to handle these problems, this paper investigates optimal design of double matching transformer networks for C-WPT. Using mathematical analysis with fundamental harmonic approximation, a design guideline is presented to avoid unnecessarily high frequency operation, to suppress the voltage stress on the link capacitors, and to achieve wide ZVS range even with low link capacitance. Simulation and hardware implementation are performed on a 5-W prototype system equipped with a 256-pF link capacitance and a 200-pF switch output capacitance. Results show that the proposed scheme ensures zero-voltage-switching from full load to 10% load, and the switching frequency and the link capacitor voltage stress are kept below 250 kHz and 452 V, respectively, in the full load condition.

A New Scheme for Maintaining Balanced DC Voltages in Static Var Compensator(SVC) (직렬형 멀티레벨 인버터를 사용한 무효전력보상장치의 새로운 직류전압 평형기법)

  • Min, Wan-Ki;Min, Jun-Ki;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.144-148
    • /
    • 2003
  • This paper examines the application of high voltage static var compensator(SVC) with cascade multilevel inverter which employs H-bridge inverter(HBI). To improve the unbalanced problem of the DC capacitor voltages, the rotated switching scheme of fundamental frequency is newly used. The optimized fundamental switching pattern with low switching frequency is adapted to be suitable for high application. The selective harmonic elimination method(SHEM) allows to keep the total harmonic distortion(THD) low in the output voltage of multilevel inverter. The SVC system is modeled using the d-q transform which calculates the instantaneous reactive power. This model is used to design a controller and analyze the SVC system. Simulated and experimental results are also presented and discussed to validate the proposed schemes.

  • PDF

Basic Study of a Phase-Shifted Soft Switching High-Frequency Inverter with Boost PFC Converter for Induction Heating

  • Kawaguchi, Yuki;Hiraki, Eiji;Tanaka, Toshihiko;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.192-199
    • /
    • 2008
  • This paper is mainly concerned with a high frequency soft-switching PWM inverter suitable for consumer induction heating systems. The proposed system is composed of a soft switching chopper based boost PFC converter stage with passive snubber and phase shifted PWM controlled full bridge ZVZCS high frequency inverter stage. Its fundamental operating performances are illustrated and evaluated in the experimental results. Its effectiveness is substantially proved on the basis of the experimental results from a practical point of view.

Experimental Validation of a Cascaded Single Phase H-Bridge Inverter with a Simplified Switching Algorithm

  • Mylsamy, Kaliamoorthy;Vairamani, Rajasekaran;Irudayaraj, Gerald Christopher Raj;Lawrence, Hubert Tony Raj
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.507-518
    • /
    • 2014
  • This paper presents a new cascaded asymmetrical single phase multilevel converter with a lower number of power semiconductor switches and isolated DC sources. Therefore, the number of power electronic devices, converter losses, size, and cost are reduced. The proposed multilevel converter topology consists of two H-bridges connected in cascaded configuration. One H-bridge operates at a high frequency (high frequency inverter) and is capable of developing a two level output while the other H-bridge operates at the fundamental frequency (low frequency inverter) and is capable of developing a multilevel output. The addition of each power electronic switch to the low frequency inverter increases the number of levels by four. This paper also introduces a hybrid switching algorithm which uses very simple arithmetic and logical operations. The simplified hybrid switching algorithm is generalized for any number of levels. The proposed simplified switching algorithm is developed using a TMS320F2812 DSP board. The operation and performance of the proposed multilevel converter are verified by simulations using MATLAB/SIMULINK and experimental results.

A PWM Method for Reduction of Switching Loss in High Speed Motor (초고속 전동기에서의 스위칭 손실 절감을 위한 PWM 방식)

  • Kim, Yoon-Ho;Lee, Byung-Soon;Oh, Jong-Han;Seoung, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.616-618
    • /
    • 1996
  • This paper presents an unipolar PWM which commutated switching device only in a half period. This method reduced switching loss significantly because of decreasing switching number in n period. In high speed motor drive needed high frequency above 300 Hz fundamental frequency, this method is suited very well. This paper described the principle of unipolar PWM method, analyzed harmonic spectrum and compared with bipolar PWM, Modified PWM and Overmodulation method in switching loss.

  • PDF

Control of Electrically Excited Synchronous Motors with a Low Switching Frequency

  • Yuan, Qing-Qing;Wu, Xiao-Jie;Dai, Peng;Fu, Xiao
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.615-622
    • /
    • 2012
  • The switching frequency of the power electronic devices used in large synchronous motor drives is usually kept low (less than 1 kHz) to reduce the switching losses and to improve the converter power capability. However, this results in a couple of problems, e.g. an increase in the harmonic components of the stator current, and an undesired cross-coupling between the magnetization current component ($i_m$) and the torque component ($i_t$). In this paper, a novel complex matrix model of electrically excited synchronous motors (EESM) was established with a new control scheme for coping with the low switching frequency issues. First, a hybrid observer was proposed to identify the instantaneous fundamental component of the stator current, which results in an obvious reduction of both the total harmonic distortion (THD) and the low order harmonics. Then, a novel complex current controller was designed to realize the decoupling between $i_m$ and $i_t$. Simulation and experimental results verify the effectiveness of this novel control system for EESM drives.