• 제목/요약/키워드: Functional tissue engineering

검색결과 101건 처리시간 0.025초

Molecular Cloning, Characterization and Functional Analysis of a 2C-methyl-D-erythritol 2, 4-cyclodiphosphate Synthase Gene from Ginkgo biloba

  • Gao, Shi;Lin, Juan;Liu, Xuefen;Deng, Zhongxiang;Li, Yingjun;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • 제39권5호
    • /
    • pp.502-510
    • /
    • 2006
  • 2C-methyl-D-erythritol 2, 4-cyclodiphosphate synthase (MECPS, EC: 4.6.1.12) is the fifth enzyme of the non-mevalonate terpenoid pathway for isopentenyl diphosphate biosynthesis and is involved in the methylerythritol phosphate (MEP) pathway for ginkgolide biosynthesis. The full-length mecps cDNA sequence (designated as Gbmecps) was cloned and characterized for the first time from gymnosperm plant species, Ginkgo biloba, using RACE (rapid amplification of cDNA ends) technique. The full-length cDNA of Gbmecps was 874 bp containing a 720 bp open reading frame (ORF) encoding a peptide of 239 amino acids with a calculated molecular mass of 26.03 kDa and an isoelectric point of 8.83. Comparative and bioinformatic analyses revealed that GbMECPS showed extensive homology with MECPSs from other species and contained conserved residues owned by the MECPS protein family. Phylogenetic analysis indicated that GbMECPS was more ancient than other plant MECPSs. Tissue expression pattern analysis indicated that GbMECPS expressed the highest in roots, followed by in leaves, and the lowest in seeds. The color complementation assay indicated that GbMECPS could accelerate the accumulation of $\beta$-carotene. The cloning, characterization and functional analysis of GbMECPS will be helpful to understand more about the role of MECPS involved in the ginkgolides biosynthesis at the molecular level.

키높이 인솔두께에 따른 족부의 생체역학적 특성변화에 대한 연구 (A Study on Changes in Biomechanical Characteristics of the Foot with Respect to Wedge-type Insole Thickness)

  • 박태현;정태곤;한동욱;이성재
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권2호
    • /
    • pp.80-90
    • /
    • 2013
  • Recently, functional insoles of wedge-type it is for the young to raise their height inserted between insole and heel cause foot pain and disease. Additionally, these have a problem with stability and excessively load-bearing during gait like high-heel shoes. In this study, we compared the changes in biomechanical characteristics of foot with different insole thickness then we will utilize for the development of the insole with the purpose of relieving the pain and disease. Subjects(male, n = 6) measured COP(center of pressure) and PCP(peak contact pressure) on the treadmill(140cm/s) using F-scan system and different insole thickness(0~50 mm) between sole and plantar surface during gait. Also, we computed changes of stresses at the foot using finite element model with various insole thickness during toe-off phase. COP moved anterior and medial direction and, PCP was increased at medial forefoot surface, $1^{st}$ and $2^{nd}$ metatarsophalangeal, ($9%{\uparrow}$) with thicker insoles and it was show sensitive increment as the insole thickness was increased from 40 mm to 50 mm. Change of the stress at the soft-tissue of plantar surface, $1^{st}$ metatarsal head represents rapid growth($36%{\uparrow}$). Also, lateral moments were increased over the 100% near the $1^{st}$ metatarsal as the insole thickness was increased from 0 mm to 30 mm. And it is show sensitive increment as the insole thickness changed 10 mm to 20 mm. As a result, it was expected that use of excessively thick insoles might cause unwanted foot pain at the forefoot region. Therefore, insole thickness under 30 mm was selected.

Wet Foam Stability from Colloidal Suspension to Porous Ceramics: A Review

  • Kim, Ik Jin;Park, Jung Gyu;Han, Young Han;Kim, Suk Young;Shackelford, James F.
    • 한국세라믹학회지
    • /
    • 제56권3호
    • /
    • pp.211-232
    • /
    • 2019
  • Porous ceramics are promising materials for a number of functional and structural applications that include thermal insulation, filters, bio-scaffolds for tissue engineering, and preforms for composite fabrication. These applications take advantage of the special characteristics of porous ceramics, such as low thermal mass, low thermal conductivity, high surface area, controlled permeability, and low density. In this review, we emphasize the direct foaming method, a simple and versatile approach that allows the fabrication of porous ceramics with tailored microstructure, along with distinctive properties. The wet foam stability is achieved under the controlled addition of amphiphiles to the colloidal suspension, which induce in situ hydrophobization, allowing the wet foam to resist coarsening and Ostwald ripening upon drying and sintering. Different components, like contact angle, adsorption free energy, air content, bubble size, and Laplace pressure, play vital roles in the stabilization of the particle stabilized wet foam to the porous ceramics. The mechanical behavior of the load-displacements curves of sintered samples was investigated using Herzian indentations testes. From the collected results, we found that microporous structures with pore sizes from 30 ㎛ to 570 ㎛ and the porosity within the range from 70% to 85%.

유한차분법을 이용한 기능성 위장 장애 진단용 초음파 시스템의 개발 (Development of Ultrasound Diagnostic System for Functional Gastrointestinal Disorders using Finite Difference Method)

  • 박원필;우대곤;고창용;이균정;이용흠;최서형;신태민;김한성;임도형
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.130-139
    • /
    • 2007
  • The disaster from functional gastrointestinal disorders (FGID) has detrimental impact on the quality of life of the affected population. There are, however, rare diagnostic methods for FGID. Our research group identified recently that the gastrointestinal tract well of the patients with FGID became more rigid than that of healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. The objective of the current study is, therefore, to identify feasibility of a diagnostic system for FGID based on ultrasound technique, which can quantify the characteristics above. Two-dimensional finite difference (FD) models (one normal and two rigid models) were developed to analyze the reflective characteristic (displacement) on each soft-tissue layer responded after application of ultrasound signals. Based on the results from FD analysis, the ultrasound system for diagnosis of the FGID was developed and clinically tested via application of it to 40 human subjects with/without FGID who were assigned to Normal and Patient Groups. The results from FD analysis showed that the maximum displacement amplitude in the rigid models (0.12 and 0.16) at the interface between the fat and muscle layers was explicitly less than that in the normal model (0.29). The results from actual specimens showed that the maximum amplitude of the ultrasound reflective signal in the rigid models $(0.2{\pm}0.1Vp-p)$ at the interface between the fat and muscle layers was explicitly higher than that in the normal model $(0.1{\pm}0.0Vp-p)$. Clinical tests using our customized ultrasound system showed that the maximum amplitudes of the ultrasound reflective signals near to the gastrointestinal tract well for the patient group $(2.6{\pm}0.3Vp-p)$ were generally higher than those in normal group $(0.1{\pm}0.2Vp-p)$. These findings suggest that our customized ultrasound system using the ultrasound reflective signal may be helpful to the diagnosis of the FGID.

Antibody Production in Plant Cell Cultures

  • Lee, James M.
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1995년도 식물학심포지움 식물로부터 유용 2차대사산물의 생산 PRODUCTION OF USEFUL SECONDARY METABOLITES FROM PLANTS
    • /
    • pp.67-78
    • /
    • 1995
  • Monoclonal antibodies (MoAbs) are a highly diversified class of proteins with major research and commercial applications such as diagnostics and therapeutics. Currently, the dominant method for producing MoAbs is through the hybridoma technique. However, this technique is slow, tedious, labor intensive, and expensive. The production of MoAbs in cultured transgenic plant cells can offer some advantages over that in the over that in the mammalian systems. The media to cultivate plant cells are well defined and inexpensive. Contamination by bacteria or fungi is easily monitored in plant tissue cultures. Furthermore, these contaminants are usually not potent pathogens to human beings. In our interdisciplinary research efforts, heavy chain monoclonal antibody (HC MAb) was inserted into Ti plasmid vector and transferred into A. tumefaciens for the transformation in tobacco cells. It was found that 76% of the transformants produced HC MAb. The presence of HC MAb in the cell membrane fraction indicated that the signal peptide was functional and efficient. The change of the HC MAb concentration during a batch culture followed a similar trend as dry cell concentration, indicating that the production of HC MAb was growth related. The long-term repeated subcultures of 11 cell lines showed that there was no obvious trend of neither the decrease nor the increase of the productivity with the repeated subcultures.

  • PDF

Tumor Stroma as a Therapeutic Target for Pancreatic Ductal Adenocarcinoma

  • Dae Ui Lee;Beom Seok Han;Kyung Hee Jung;Soon-Sun Hong
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.281-290
    • /
    • 2024
  • Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis owing to its desmoplastic stroma. Therefore, therapeutic strategies targeting this tumor stroma should be developed. In this study, we describe the heterogeneity of cancer-associated fibroblasts (CAFs) and their diverse roles in the progression, immune evasion, and resistance to treatment of PDAC. We subclassified the spatial distribution and functional activity of CAFs to highlight their effects on prognosis and drug delivery. Extracellular matrix components such as collagen and hyaluronan are described for their roles in tumor behavior and treatment outcomes, implying their potential as therapeutic targets. We also discussed the roles of extracellular matrix (ECM) including matrix metalloproteinases and tissue inhibitors in PDAC progression. Finally, we explored the role of the adaptive and innate immune systems in shaping the PDAC microenvironment and potential therapeutic strategies, with a focus on immune cell subsets, cytokines, and immunosuppressive mechanisms. These insights provide a comprehensive understanding of PDAC and pave the way for the development of prognostic markers and therapeutic interventions.

체적의 변화를 통한 방광벽 두께와 기계적 재료상수 변화가 배뇨근 활동에 미치는 영향 (Effect of Bladder Wall Thickness Through Change of Bladder Volume and Material Properties on Detrusor activity Study)

  • 전수민;이문규;최범규
    • 한국정밀공학회지
    • /
    • 제29권5호
    • /
    • pp.584-590
    • /
    • 2012
  • The structural and functional disorder of a detrusor induces a bladder hypertrophy and degenerates a bladder muscle gradually by preventing normal urination. Thus, the thickness of the bladder wall has been increased in proportion to the degree of bladder outlet obstruction. In this study, the mechanical characteristics of the detrusor is analyzed for the physical properties and the thickness changes of the bladder muscle using a mathematically analytic method. In order to obtain the mechanical property of the bladder muscle, the tensile test of porcine bladder tissue is performed because its property is similar to that of human. The result of tensile test is applied to the mathematically model as Mooney Rivlin coefficients which represent the hyperelastic material. The model of the bladder is defined as the spherical shape with the initial volume of 50ml. The principal stress and strain according to the thickness are analyzed. Also, computer simulations for three types of the material property for the model of the bladder are performed based on the fact that the stiffness of the bladder is weakened as the progress of the benign prostatic hyperplasia. As a result, the principal stress is 341kPa at the initial thickness of 2.2mm, and is 249kPa at 6.5mm. As the bladder wall thickness increases, the principal stress decreases. The principal stress and strain decrease as the stiffness of the bladder decreases under the same thinkness.

플라스마 처리와 아크릴산 결합에 의한 PLLA 필름 및 지지체의 최적 친수화와 연골세포 점착 (Optimal Hydrophilization and Chondrocyte Adhesion of PLLA Films and Scaffolds by Plasma Treatment and Acrylic Acid Grafting)

  • 양희석;박귀덕;안광덕;김병수;한동근
    • 폴리머
    • /
    • 제30권2호
    • /
    • pp.168-174
    • /
    • 2006
  • 기존의 고분자 지지체의 소수성 및 세포친화성을 향상시켜 조직공학용 고기능성 지지체로 사용하기 위해서 여러 가지 플라스마 처리와 카복실기를 함유한 아크릴산(AA)을 직접 chamber내에서 in situ 그래프트 결합을 행하여 최적의 친수성을 갖는 생분해성 poly(L-lactic acid) (PLLA) 필름 및 이중기공 지지체를 제조하였다. 표면분석 결과, 표면개질된 비다공성 PLLA 필름 및 이중기공 지지체 표면은 미처리 PLLA control에 비해서 접촉각의 감소와 카복실기 함량의 증가로 친수성이 크게 증가하였다. 특히 여러 가지 표면개질 방법 중 Ar(아르곤)/AA 시료나 Ar+TP(열중합) 시료보다는 Ar 플라스마와 AA를 차례로 처리한 Ar+AA+AA 시료가 다른 시료들보다 접촉각이 낮고 카복실기가 많아서 최적의 표면 친수화 처리조건임을 알 수 있었으며, 표면개질된 PLLA 필름 및 이중기공 지지체의 경우 친수성이 증가함에 따라서 연골세포의 점착과 증식도 크게 향상되었다.

In Vivo Measurement of Site-Specific Peritoneal Solute Transport Using a Fiber-Optic-based Fluorescence Photobleaching Technique

  • Lee, Donghee;Kim, Jeong Chul;Shin, Eunkyoung;Ju, Kyung Don;Oh, Kook-Hwan;Kim, Hee Chan;Kang, Eungtaek;Kim, Jung Kyung
    • Journal of the Optical Society of Korea
    • /
    • 제19권3호
    • /
    • pp.228-236
    • /
    • 2015
  • Fluorescence recovery after photobleaching (FRAP) is a well-established method commonly used to measure the diffusion of fluorescent solutes and biomolecules in living cells or tissues. Here a fiber-optic-based FRAP (f-FRAP) system was developed, and validated using macromolecules in water and agarose gels of different concentrations. We applied f-FRAP to measure the site-specific diffusion of fluorescein (NaFluo) in peritoneal membranes (PMs) on the liver, cecum, and kidney of a living rat during peritoneal dialysis. Diffusion of fluorescein in PM varied in a time-dependent manner according to the type of organ ($D_{PM\;on\;Liver}/D_{NaFluo}=0.199{\pm}0.085$, $D_{PM\;on\;Cecum}/D_{NaFluo}=0.292{\pm}0.151$, $D_{PM\;on\;Kidney}/D_{NaFluo}=0.218{\pm}0.110$). The proposed method allows direct quantitative measurement of the three-dimensional diffusion in local PM in vivo, which was previously inaccessible by peritoneal function test methods such as peritoneal equilibration test (PET) and standardized PM assessment (SPA). f-FRAP is promising for local and dynamic assessments of peritoneal pathophysiology and the mass transport properties of PMs, presumed to be affected by variation of tissue structures over different organs and functional changes of the PM with years of peritoneal dialysis.

Effect of Silk Fibroin on the Protection of Alcoholic Hepatotoxicity in the Liver of Alcohol Preference Mouse

  • Kang, Gyung-Don;Lee, Ki-Hoon;Do, Sun-Gil;Kim, Chung-Sub;Suh, Jun-Gyo;Oh, Yang-Seok;Nahm, Joong-Hee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제2권1호
    • /
    • pp.15-18
    • /
    • 2001
  • Silk fibroin (SF) derided from the domestic silk worm, bombyx mori, is the natural protein and widely used as bio-functional materials as well as apparels. We studied the livers protective effect of SF from alcohol-induced hepatotoxicity in the alcohol preference mouse. To increase more absorption of SF in experimental animals, molecular weight of SF was lowered by 2N of HCI aqueous solution at 10$0^{\circ}C$ for 48 hrs. SF was added to liquid diet with alcohol and fed to the alcohol preference mice for 4 weeks. To assess the liver function, the concentration of alanine aminotransferase (AlT), aspartate aminotransferase (AST) and cholesterol present in either blood or liver tissue were measured. As compared with non-SF treated groups the SF-treated showed significantly low concentrations of ALT, AST, cholesterol and triacylglycerol values, respectively. Histopathological examination revealed that the extent of hepatocyte injury in the SF-treated group was reduced when it was compared with non SF-treated group. These results suggest that SF may have liver protective effects against alcohol-induced hepatotoxicity.

  • PDF