Browse > Article
http://dx.doi.org/10.3807/JOSK.2015.19.3.228

In Vivo Measurement of Site-Specific Peritoneal Solute Transport Using a Fiber-Optic-based Fluorescence Photobleaching Technique  

Lee, Donghee (Department of Mechanical Engineering, Kookmin University)
Kim, Jeong Chul (Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University)
Shin, Eunkyoung (Clinical Research Institute, Seoul National University Hospital)
Ju, Kyung Don (Clinical Research Institute, Seoul National University Hospital)
Oh, Kook-Hwan (Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital)
Kim, Hee Chan (Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University)
Kang, Eungtaek (Department of Internal Medicine, Chung-Ang University Hospital)
Kim, Jung Kyung (Department of Mechanical Engineering, Kookmin University)
Publication Information
Journal of the Optical Society of Korea / v.19, no.3, 2015 , pp. 228-236 More about this Journal
Abstract
Fluorescence recovery after photobleaching (FRAP) is a well-established method commonly used to measure the diffusion of fluorescent solutes and biomolecules in living cells or tissues. Here a fiber-optic-based FRAP (f-FRAP) system was developed, and validated using macromolecules in water and agarose gels of different concentrations. We applied f-FRAP to measure the site-specific diffusion of fluorescein (NaFluo) in peritoneal membranes (PMs) on the liver, cecum, and kidney of a living rat during peritoneal dialysis. Diffusion of fluorescein in PM varied in a time-dependent manner according to the type of organ ($D_{PM\;on\;Liver}/D_{NaFluo}=0.199{\pm}0.085$, $D_{PM\;on\;Cecum}/D_{NaFluo}=0.292{\pm}0.151$, $D_{PM\;on\;Kidney}/D_{NaFluo}=0.218{\pm}0.110$). The proposed method allows direct quantitative measurement of the three-dimensional diffusion in local PM in vivo, which was previously inaccessible by peritoneal function test methods such as peritoneal equilibration test (PET) and standardized PM assessment (SPA). f-FRAP is promising for local and dynamic assessments of peritoneal pathophysiology and the mass transport properties of PMs, presumed to be affected by variation of tissue structures over different organs and functional changes of the PM with years of peritoneal dialysis.
Keywords
Fluorescence recovery after photobleaching (FRAP); Peritoneal membrane; Diffusion; Fiberoptics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Rippe, "A three-pore model of peritoneal transport," Peritoneal Dialysis International 13 (Suppl 2), S35-S38 (1993).
2 E. Goffin, "Peritoneal membrane structural and functional changes during peritoneal dialysis," Semin. Dial. 21, 258-265 (2008).   DOI   ScienceOn
3 W. Van Biesen, A. Van Der Tol, N. Veys, N. Lameire, and R. Vanholder, "Evaluation of the peritoneal membrane function by three letter word acronyms: PET, PDC, SPA, PD-Adequest, POL: What to do?," Contrib. Nephrol. 150, 37-41 (2006).
4 M. M. Pannekeet, A. L. Imholz, D. G. Struijk, G. C. Koomen, M. J. Langedijk, N. Schouten, R. de Waart, J. Hiralall, and R. T. Krediet, "The standard peritoneal permeability analysis: a tool for the assessment of peritoneal permeability characteristics in CAPD patients," Kidney Int. 48, 866-875 (1995).   DOI   ScienceOn
5 J. Lippincott-Schwartz, E. Snapp, and A. Kenworthy, "Studying protein dynamics in living cells," Nat. Rev. Mol. Cell Biol. 2, 444-456 (2001).
6 D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, "Mobility measurement by analysis of fluorescence photobleaching recovery kinetics," Biophys. J. 16, 1055-1069 (1976).   DOI   ScienceOn
7 J. D. Bryers and F. Drummond, "Local macromolecule diffusion coefficients in structurally non-uniform bacterial biofilms using fluorescence recovery after photobleaching (frap)," Biotechnol. Bioeng. 60, 462-473 (1998).   DOI
8 H. A. Leddy and F. Guilak, "Site-specific moleculars diffusion in articular cartilage measured using fluorescence recovery after photobleaching," Ann. Biomed. Eng. 31, 753-760 (2003).   DOI   ScienceOn
9 M. C. Papadopoulos, J. K. Kim, and A. S. Verkman, "Extracellular space diffusion in central nervous system: Anisotropic diffusion measured by elliptical surface photobleaching," Biophys. J. 89, 3660-3668 (2005).   DOI   ScienceOn
10 K. H. Lee, S. J. Shin, C. B. Kim, J. K. Kim, Y. W. Cho, B. G. Chung, and S. H. Lee, "Microfluidic synthesis of pure chitosan microfibers for bio-artificial liver chip," Lab. Chip. 10, 1328-1334 (2010).   DOI   ScienceOn
11 J. R. Thiagarajah, J. K. Kim, M. Magzoub, and A. S. Verkman, "Slowed diffusion in tumors revealed by microfiberoptic epifluorescence photobleaching," Nat. Meth. 3, 275-280 (2006).   DOI   ScienceOn
12 Z. Zador, M. Magzoub, S. Jin, G. T. Manley, M. C. Papadopoulos, and A. S. Verkman, "Microfiberoptic fluorescence photobleaching reveals size-dependent macromolecule diffusion in extracellular space deep in brain," FASEB J. 22, 870-879 (2008).
13 T. J. Feder, I. Brust-Mascher, J. P. Slattery, B. Baird, and W. W. Webb, "Constrained diffusion or immobile fraction on cell surfaces: A new interpretation," Biophys. J. 70, 2767-2773 (1996).   DOI   ScienceOn
14 J. Yguerabide, J. A. Schmidt, and E. E. Yguerabide, "Lateral mobility in membranes as detected by fluorescence recovery after photobleaching," Biophys. J. 40, 69-75 (1982).   DOI   ScienceOn
15 D. M. Soumpasis, "Theoretical analysis of fluorescence photobleaching recovery experiments," Biophys. J. 41, 95-97 (1983).   DOI   ScienceOn
16 G. K. Ackers and R. L. Steere, "Restricted diffusion of macromolecules through agar-gel membranes," Biochim. Biophys. Acta. 59, 137-149 (1962).   DOI
17 S. J. Davies, J. Bryan, L. Phillips, and G. I. Russell, "Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis," Nephrology Dialysis Transplantation 11, 498-506 (1996).   DOI   ScienceOn
18 M. F. Flessner, "Small-solute transport across specific peritoneal tissue surfaces in the rat," J. Am. Soc. Nephrol. 7, 225-233 (1996).
19 R. B. Asghar and S. J. Davies, "Pathways of fluid transport and reabsorption across the peritoneal membrane," Kidney Int. 73, 1048-1053 (2008).   DOI   ScienceOn
20 B. Rippe and D. Venturoli, "Fluid loss from the peritoneal cavity by back-filtration through the small pores of the three-pore model," Kidney Int. 73, 985-986 (2008).   DOI   ScienceOn
21 J. Burkart and J. M. Henrich, "Problems with solute clearance and ultrafiltration in continuous peritoneal dialysis," UpToDate (2013).
22 W. Smit, N. Schouten, N. van den Berg, M. J. Langedijk, D. G. Struijk, and R. T. Krediet, "Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study," Peritoneal Dialysis International 24, 562-70 (2004).
23 B. G. Stegmayr, "Beta-blockers may cause ultrafiltration failure in peritoneal dialysis patients," Peritoneal Dialysis International 17, 541-5 (1997).
24 S. J. Davies, E. A. Brown, N. E. Frandsen, A. S. Rodrigues, A. Rodriguez-Carmona, A. Vychytil, E. Macnamara, A. Ekstrand, A. Tranaeus, and J. C. Filho, "Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription," Kidney Int. 67, 1609-1615 (2005).   DOI   ScienceOn
25 M. F. Flessner and R. L. Dedrick, "Role of the liver in small-solute transport during perit Flessner oneal dialysis," J. Am. Soc. Nephrol. 5, 116-120 (1994).
26 T. Casalini, M. Salvalaglio, G. Perale, M. Masi, and C. Cavallotti, "Diffusion and aggregation of sodium fluorescein in aqueous solutions," J. Phys. Chem. B. 115, 12896-12904 (2011).   DOI   ScienceOn
27 L. Gotloib, A. Shustak, P. Bar-Sella, and V. Eiali, "Heterogeneous density and ultrastructure of rabbit's peritoneal microvasculature," Int. J. Artif. Organs. 7, 123-125 (1984).
28 C. Ronco, "The "nearest capillary" hypothesis: A novel approach to peritoneal transport physiology," Perit. Dial. Int. 16, 121-125 (1996).