Browse > Article
http://dx.doi.org/10.4191/kcers.2019.56.3.02

Wet Foam Stability from Colloidal Suspension to Porous Ceramics: A Review  

Kim, Ik Jin (Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University)
Park, Jung Gyu (Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University)
Han, Young Han (Department of Materials Science and Engineering, Wuhan University of Technology)
Kim, Suk Young (Department of Materials Science and Engineering, Yeungnam University)
Shackelford, James F. (Department of Materials Science and Engineering, University of California)
Publication Information
Abstract
Porous ceramics are promising materials for a number of functional and structural applications that include thermal insulation, filters, bio-scaffolds for tissue engineering, and preforms for composite fabrication. These applications take advantage of the special characteristics of porous ceramics, such as low thermal mass, low thermal conductivity, high surface area, controlled permeability, and low density. In this review, we emphasize the direct foaming method, a simple and versatile approach that allows the fabrication of porous ceramics with tailored microstructure, along with distinctive properties. The wet foam stability is achieved under the controlled addition of amphiphiles to the colloidal suspension, which induce in situ hydrophobization, allowing the wet foam to resist coarsening and Ostwald ripening upon drying and sintering. Different components, like contact angle, adsorption free energy, air content, bubble size, and Laplace pressure, play vital roles in the stabilization of the particle stabilized wet foam to the porous ceramics. The mechanical behavior of the load-displacements curves of sintered samples was investigated using Herzian indentations testes. From the collected results, we found that microporous structures with pore sizes from 30 ㎛ to 570 ㎛ and the porosity within the range from 70% to 85%.
Keywords
Colloidal suspension; Surfactants; Wet foam stability; Direct foaming; Porous ceramics;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 S. Bhaskar, D. N. Seo, J. G. Park, G. H. Cho, B. H. Kang, T. Y. Lim, and I. J. Kim, "$Al_2O_3-TiO_2$ Porous Ceramics from Particle-Stabilized Wet Foam by Direct Foaming," J. Ceram. Process. Res., 16 [5] 643-47 (2015).   DOI
2 N. Sarkar, J. G. Park, D. N. Seo, S. Mazumder, A. Pokhrel, C. G. Aneziris, and I. J. Kim, "Influence of Amphiphile on Foam Stability of $Al_2O_3-SiO_2$ Colloidal Suspension to Porous Ceramics," J. Ceram. Process. Res., 16 [4] 392-96 (2015).   DOI
3 A. Stocco, W. Drenckhan, E. Rio, D. Langevin, and B. P. Binks, "Particle-Stabilised Foams: An Interfacial Study," Soft Matter, 5 [11] 2215-22 (2009).   DOI
4 B. S. Murray and R. Ettelaie, "Foam Stability: Proteins and Nanoparticles," Curr. Opin. Colloid Interface Sci., 9 [5] 314-20 (2004).   DOI
5 W. Zhao, S. Bhaskar, J. G. Park, S. Y. Kim, I. S. Han, and I. J. Kim, "Particle-Stabilized Wet Foams to porous Ceramics by Direct Foaming," J. Ceram. Process. Res., 15 [6] 503-7 (2014).   DOI
6 A. Pokhrel, J. G. Park, W. Zhao, and I. J. Kim, "Functional Porous Ceramics Using Amphiphilic Molecule," J. Ceram. Process Res., 13 [4] 420-24 (2012).   DOI
7 I. Lesov, S. Tcholakova, and N. Denkov, "Factors Controlling the Formation and Stability of Foams Used as Precursors of Porous Materials," J. Colloid Interface Sci., 426 9-21 (2014).   DOI
8 A. Pokhrel, D. N. Seo, S. T. Lee, and I. J. Kim, "Processing of Porous Ceramics by Direct Foaming: A Review," J. Korean Ceram. Soc, 50 [2] 93-100 (2013).   DOI
9 F. Schuth and W. Schmidt, "Microporous and Mesoporous Materials," Adv. Mater., 14 [9] 629-38 (2002).   DOI
10 A. R. Studart, J. Studer, L. Xu, K. Yoon, H. C. Shum, and D. A. Weitz, "Hierarchical Porous Materials Made by Drying Complex Suspensions," Langmuir, 27 [3] 955-64 (2011).   DOI
11 F. A. Acosta G., A. H. Castillejos E., J. M. Almanza R., and A. Flores V., "Analysis of Liquid Flow through Ceramic Porous Media Used for Molten Metal Filtration," Metall. Mater. Trans. B, 26 [1] 159-71 (1995).   DOI
12 Y. Shan, J. F. Yang, J. Q. Gao, W. H. Zhang, Z. H. Jin, R. Janssen, and T. Ohji, "Porous Silicon Nitride Ceramics Prepared by Reduction-Nitridation of Silica," J. Am. Ceram. Soc., 88 [9] 2594-96 (2005).   DOI
13 T. Fukasawa, Z. Y. Deng, M. Ando, T. Ohji, and Y. Goto, "Pore Structure of Porous Ceramics Synthesized from Water-Based Slurry by Freeze-Dry Process," J. Mater. Sci., 36 [10] 2523-27 (2001).   DOI
14 I. Akartuna, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Macroporous Ceramics from Particle-Stabilized Emulsions," Adv. Mater., 20 [24] 4714-18 (2008).   DOI
15 I. Akartuna, E. Tervoort, A. R. Studart, and L. J. Gauckler, "General Route for the Assembly of Functional Inorganic Capsules," Langmuir, 25 [21] 12419-24 (2009).   DOI
16 J. T. Richardson, Y. Peng, and D. Remue, "Properties of Ceramic Foam Catalyst Supports: Pressure Drop," Appl. Catal. A, 204 [1] 19-32 (2000).   DOI
17 D. J. Green and P. Colombo, "Cellular Ceramics: Intriguing Structures, Novel Properties, and Innovative Applications," MRS Bull., 28 [4] 296-300 (2003)   DOI
18 L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties; Cambridge University Press, Cambridge, 1997.
19 P. Colombo and E. Bernarde, "Macro- and Micro-Cellular Porous Ceramics from Preceramic Polymers," Compos. Sci. Technol., 63 [16] 2353-59 (2003).   DOI
20 G. R. Pickrell, "Porous Articles and Method for the Manufacture Thereof"; U.S. Patent 9,801,044, 2001.
21 Y. W. Kim, Y. J. Jin, Y. S. Chun, I. H. Song, and H. D. Kim, "A Simple Pressing Route to Closed-Cell Microcellular Ceramics," Scr. Mater., 53 [8] 921-25 (2005).   DOI
22 S. Dhara and P. Bhargava, "Influence of Slurry Characteristics on Porosity and Mechanical Properties of Alumina Foams," Int. J. Appl. Ceram. Technol., 3 [5] 382-92 (2006).   DOI
23 B. J. Briscoe, A. U. Khan, and P. F. Luckham, "Optimising the Dispersion on an Alumina Suspension Using Commercial Polyvalent Electrolyte Dispersants," J. Eur. Ceram. Soc., 18 [14] 2141-47 (1998).   DOI
24 X.-L. Wei, N. Li, W. J. Yi, L.-J. Li, and Z.-S. Chao, "High Performance Super-Hydrophobic $ZrO_2-SiO_2$ Porous Ceramics Coating with Flower-like $CeO_2$ Micro/Nano-Structure," Surf. Coat. Technol., 325 565-71 (2017).   DOI
25 M. S. Nasser and A. E. James, "The Effect of Electrolyte Concentration and pH on the Flocculation and Rheological Behavior of Kaolinite Suspensions," J. Eng. Sci. Technol., 4 [4] 430-46 (2009).
26 Q. Zhang, W. Li, M. Gu, and Y. Jin, "Dispersion and Rheological Properties of Concentrated Silicon Aqueous Suspension," Powder Technol., 161 [2] 130-34 (2006).   DOI
27 A. Pokhrel, W. Zhao, and I. J. Kim, "Wet Foam Stabilized by Amphiphiles to Tailor the Microstructure of Porous Ceramics," Key Eng. Mater., 512 288-92 (2012).   DOI
28 J. C. H. Wong, E. Tervoort, S. Busato, U. T. Gonzenbach, A. R. Studart, P. Ermanni, and L. J. Gauckler, "Designing Macroporous Polymers from Particle-Stabilized Foams," J. Mater. Chem., 20 [27] 5628-40 (2010).   DOI
29 P. Sepulveda, "Gelcasting Foams for Porous Ceramics," Am. Ceram. Soc. Bull., 76 [10] 61-5 (1997).
30 I. H. Arita, V. M. Castano, and D. S. Wilkinson, "Synthesis and Processing of Hydroxyapatite Ceramic Tapes with Controlled Porosity," J. Mater. Sci.: Mater. Med., 6 [1] 19-23 (1995).   DOI
31 N. Sarkar and I. J. Kim, "Porous Ceramics," in Advanced Ceramic Processing, Ed. by A. M. A. Mohamed, IntechOpen, London, 2015.
32 I. Y. Guzman, "Certain Principles of Formation of Porous Ceramic Structures. Properties and Applications (A Review)," Glass Ceram., 60 [9] 280-83 (2003).   DOI
33 T. S. Horozov, "Foams and Foam Films Stabilised by Solid Particles," Curr. Opin. Colloid Interface Sci., 13 [3] 134-40 (2008).   DOI
34 Z. Bazelova, L. Pach, J. Lokaj, and V. Kovar, "Properties of $Al_2O_3$ Foams Optimized by Factorial Design," Ceramics-Silik., 55 [3] 240-45 (2011).
35 X. Deng, J. Wang, S. Du, F. Li, L. Lu, and H. Zhang, "Fabrication of Porous Ceramics by Direct Foaming," Interceram. Int. Ceram. Rev., 63 [3] 104-8 (2014).   DOI
36 I. Lesov, S. Tcholakova, and N. Denkov, "Factors Controlling the Formation and Stability of Foams Used as Precursors of Porous Materials," J. Colloid Interface Sci., 426 9-21 (2014).   DOI
37 N. D. Denkov, I. B. Ivanov, P. A. Kralchevsky, and D. T. Wasan, "A Possible Mechanism of Stabilization of Emulsions by Solid Particles," J. Colloid Interface Sci., 150 [2] 589-93 (1992).   DOI
38 L. J. Gauckler, Th. Graule, and F. Baader, "Ceramic Forming Using Enzyme Catalyzed Reactions," Mater. Chem. Phys., 61 [1] 78-102 (1999).   DOI
39 S. Bhaskar, J. G. Park, M. J. Lee, T. Y. Lim, I. S. Han, and I. J. Kim, "$ZrO_2-TiO_2$ Porous Ceramics from Particle Stabilized Wet Foam by Colloidal Processing," J. Ceram. Soc. Jpn., 124 [1] 106-10 (2016).   DOI
40 C. Hill and J. Eastoe, "Foams: From Nature to Industry," Adv. Colloid Interface Sci., 247 496-13 (2017).   DOI
41 A. B. Subramaniam, C. Mejean, M. Abkarian, and H. A. Stone, "Microstructure, Morphology and Lifetime of Armored Bubbles Exposed to Surfactants," Langmuir, 22 [14] 5986-90 (2006).   DOI
42 U. T. Gonzenbach, A. R. Studart, D. Steinlin, E. Tervoort, and L. J. Gauckler, "Processing of Particle-Stabilized Wet Foams into Porous Ceramics," J. Am. Ceram. Soc., 90 [11] 3407-14 (2007).   DOI
43 L. J. Gauckler, M. M. Waeber, C. Conti, and M. Jacob-Duliere, "Ceramic Foam for Molten Filtration," JOM, 37 [9] 47-50 (1985).   DOI
44 U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Stabilization of Foams with Inorganic Colloidal Particles," Langmuir, 22 [26] 10983-88 (2006).   DOI
45 I. Sopyan and K. Jasminder, "Preparation and Characterization of Porous Hydroxyapatite through Polymeric Sponge Method," Ceram. Int., 35 [8] 3161-68 (2009).   DOI
46 K. Araki and J. W. Halloran, "New Freeze-Casting Technique for Ceramics with Sublimable Vehicles," J. Am. Ceram. Soc., 87 [10] 1859-63 (2004).   DOI
47 T. N. Hunter, R. J. Pugh, G. V. Franks, and G. J. Jameson, "A Role of Particles in Stabilizing Foams and Emulsions," Adv. Colloid Interface Sci., 137 [2] 57-81 (2008).   DOI
48 H. W. Kim, J. C. Knowles, and H. E. Kim, "Hydroxyapatite and Gelatin Composite Foams Processed via Novel Freeze-Drying and Crosslinking for Use as Temporary Hard Tissue Scaffolds," J. Biomed. Mater. Res., Part A, 72 [2] 136-45 (2005).
49 J. A. Lewis and G. M. Granston, "Direct Writing in Three Dimensions," Mater. Today, 7 [7] 32-9 (2004).   DOI
50 B. Y. Han, C. J. Shoji, C. J. Hansen, E. Hong, D. C. Dunand, and J. A. Lewis, "Printed Origami Structures," Adv. Mater., 22 [20] 2251-54 (2010).   DOI
51 C. Voigt, C. G. Aneziris, and J. Hubalkova, "Rheological Characterization of Slurries for the Preparation of Alumina Foams via Replica Technique," J. Am. Ceram. Soc., 98 [5] 1460-63 (2015).   DOI
52 F. Razaei, A. Mosca, P. Webley, J. Hedlund, and P. Xiao, "Comparison of Traditional and Structured Adsorbents for $CO_2$ Separation by Vacuum-Swing Adsorption," Ind. Eng. Chem. Res., 49 [10] 4832-41 (2010).   DOI
53 A. Corma, "From Microporous to Mesoporous Molecular Sieve Materials and their Use in Catalysis," Chem. Rev., 97 [6] 2373-420 (1997).   DOI
54 K. Schwartzwalder, "Method of Making Porous Ceramic Articles"; U.S. Patent 3,090,094, 1961.
55 E. Gregorova and W. Pabst, "Process Control and Optimized Preparation of Porous Alumina Ceramics by Starch Consolidation Casting," J. Eur. Ceram. Soc., 31 [12] 2073-81 (2011).   DOI
56 H. Sarraf and J. Havrda, "Rheological Behavior of Concentrated Alumina Suspension: Effect of Electrosteric Stabilization," Ceram.-Silik., 51 [3] 147-52 (2007).
57 N. Demirkol and A. Capoglu, "Rheological and Green Strength Behaviour of Low-Clay Translucent Whiteware Slurries with an Acrylic Type Emulsion Binder Addition"; pp. 434-38 in Proceedings of the European Ceramic Society for 10th International Conference and Exhibition of the European Ceramic Society. Berlin, Germany, 2007.
58 M. V. A. Umaran and R. L. Menchavez, "Aqueous Dispersion of Red Clay-based Ceramic Powder with the Addition of Starch," Mater. Res., 16 375-84 (2013).   DOI
59 D. Sharma and A. Mukherjee, "Essential Parameters Responsible for Rheological Assessment of Concentrated Dispersion:-A Comprehensive Review," J. Ceram. Process. Res., 16 [6] 690-704 (2015).   DOI
60 Y.-J. Shin, C.-C. Su, and Y.-H. Shen, "Dispersion of Aqueous Nano-Sized Alumina Suspensions Using Cationic Polyelectrolyte," Mater. Res. Bull., 41 [10] 1964-71 (2006).   DOI
61 F. K. Yang, C. Li, Y. Lin, and C. A. Wang, "Fabrication of Porous Mullite Ceramics with High Porosity Using Foam-Gelcasting," Key Eng. Mater., 512-515 580-85 (2012).   DOI
62 M. Scheffler, and P. Colombo, Cellular Ceramics: Structure, Manufacturing, Properties and Applications; Wiley-VCH, Weinheim, 2005.
63 A. R. Stuart, U. T. Gonzenbach, and E. Tervoort, "Processing Routes to Macroporous Ceramics: A Review," J. Am. Ceram. Soc., 89 [6] 1771-89 (2006).   DOI
64 U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Macroporous Ceramics from Particle-Stabilized Wet Foams," J. Am. Ceram. Soc., 90 [1] 16-22 (2007).   DOI
65 K. Kamitani, T. Hyodo, Y. Shimizu, and M. Egashira, "Fabrication of Highly Porous Alumina-based Ceramics with Connected Space by Employing PMMA Microspheres as a Template," Adv. Mater. Sci. Eng., 2009 601850 (2009).
66 G. J. Zhang, J. F. Yang, and T. Ohji, "Fabrication of Porous Ceramics with Unidirectionally Aligned Continuous Pores," J. Am. Ceram. Soc., 84 [6] 1395-57 (2001).   DOI
67 W. Y. Jang, D. N. Seo, B. Basnet, J. G. Park, I. S. Han, and I. J. Kim, "Tailoring the Microstructure of $Al_2O_3-SiO_2$ Porous Ceramics through Starch Consolidation by Direct Foaming," J. Ceram. Process. Res., 18 [4] 275-79 (2017).   DOI
68 P. Sepulveda and J. G. P. Binner, "Processing of Cellular Ceramics by Foaming and in situ Polymerisation of Organic Monomers," J. Eur. Ceram. Soc., 19 [12] 2059-66 (1999).   DOI
69 S. Li, C. A. Wang, and J. Zhou, "Effect of Starch Addition on Microstructure and Properties of Highly Porous Alumina Ceramics," Ceram. Int., 39 [8] 8833-39 (2013).   DOI
70 P. J. Wilde, "Interface: Their Role in Foam and Emulsion Behavior," Curr. Opin. Colloid Interface Sci., 5 [3] 176-81 (2000).   DOI
71 G. Morris, M. R. Pursell, S. J. Neethling, and J. J. Cilliers, "The Effect of Particle Hydrophobicity, Separation Distance and Packing Patterns on the Stability of a Thin Film," J. Colloid Interface Sci., 327 [1] 138-44 (2008).   DOI
72 W. Y. Jang, D. N. Seo, J. G. Park, H. T. Kim, S. M. Lee, S. Y. Kim, and I. J. Kim, "Highly-Closed/-Open Porous Ceramics with Micro-Beads by Direct Foaming," J. Korean Ceram. Soc, 53 [6] 604-9 (2016).   DOI
73 H. Yangcheng, Characterization of Normal and Waxy Corn Starch for Bioethanol Production, Master Thesis, Iowa State University, Iowa, 2012.
74 J. T. Muth, P. G. Dixon, L. Woish, L. J. Gibson, and J. A. Lewis, "Architected Cellular Ceramics with Tailored Stiffness via Direct Foam Writing," PNAS, 114 [8] 1832-7 (2017).   DOI
75 A. R. Studart, V. C. Pandolfelli, E. Tervoort and L. J. Gauckler, "Selection of Dispersants for High-Alumina Zero-Cement Refractory Castables," J. Eur. Ceram. Soc., 23 [7] 997-1004 (2003).   DOI
76 S. M. Olhero and J. M. F. Ferreira, "Influence of Particle Size Distribution on Rheology and Particle Packing of Silica-based Suspensions," Powder Technol., 139 [1] 69-75 (2004).   DOI
77 A. Mukherjee, R. Khan, B. Bera and H. S. Maiti, "I: Dispersibility of Robust Alumina Particles in Non-Aqueous Solution," Ceram. Int., 34 [3] 523-29 (2008).   DOI
78 J. Banhart, "Manufacturing Routes for Metallic Foams," JOM, 52 [12] 22-7 (2000).   DOI
79 A. Korjakins, L. Upeniece, and D. Bajare, "High Efficiency Porous Ceramics with Controllable Porosity"; pp. 5-10 in Proceedings of the CIVIL ENGINEERING '13 for 4th International Scientific Conference. Jelgava, Latvia 2013.
80 S. Bhaskar, G. H. Cho, J. G. Park, S. W. Kim, H. T. Kim, and I. J. Kim, "Micro Porous $SiO_2$-SiC Ceramics from Particle Stabilized Foams by Direct Foaming," J. Ceram. Soc. Jpn., 123 [1437] 378-82 (2015).   DOI
81 R. Ahmad, J.-H. Ha, and I.-H. Song, "Processing Methods for the Preparation of Porous Ceramics," J. Korean Powd. Metall. Inst., 21 [5] 389-98 (2014).   DOI
82 E. P. Santos, C. V. Santilli, and S. H. Pulcinelli, "Effect of Aging on the Stability of Ceramic Foams Prepared by Thermostimulated Sol-Gel Process," J. Sol-Gel Sci. Technol., 26 [1] 165-69 (2003).   DOI
83 P. Nguyen and C. Pham, "Innovative Porous SiC-based Materials: From Nanoscopic Understandings to Tunable Carriers Serving Catalytic Needs," Appl. Catal. A, 391 [1] 443-54 (2011).   DOI
84 G. Liu, P. Dai, Y. Wang, J. Yang, and G. Qiao, "Fabrication of Pure SiC Ceramic Foams Using $SiO_2$ as a Foaming Agent via High-Temperature Recrystallization," Mater. Sci. Eng. A, 528 [6] 2418-22 (2011).   DOI
85 M. Zorko, S. Novak, and M. Gaberscek, "Fast Fabrication of Mesoporous SiC with High and Highly Ordered Porosity from Ordered Silica Templates," J. Ceram. Process. Res., 12 [6] 654-59 (2011).   DOI
86 J. H. Eom, Y. W. Kim, and S. Raju, "Processing and Properties of Macroporous Silicon Carbide Ceramics: A Review," J. Asian Ceram. Soc., 1 [3] 220-42 (2013).   DOI
87 F. Leal-Calderon, "Emulsified Lipids: Formulation and Control of End-Use Properties," OCL, 19 [2] 111-9 (2012).   DOI
88 F. A. Almeida, E. C. Botelho, F. C. L. Melo, T. M. B. Campos, and G. Thim, "Influence of Cassava Starch Content and Sintering Temperature on the Alumina Consolidation Technique," J. Eur. Ceram. Soc., 29 [9] 1587-94 (2009).   DOI
89 J. Tsubaki, M. Kato, M. Miyazawa, T. Kuma, and H. Mori, "The Effects of the Concentration of a Polymer Dispersant on Apparent Viscosity and Sedimentation Behavior of Dense Slurries," Chem. Eng. Sci., 56 [9] 3021-26 (2001).   DOI
90 A. Diaz and S. Hampshire, "Characterisation of Porous Silicon Nitride Materials Produced with Starch," J. Eur. Ceram. Soc., 24 [2] 413-19 (2004).   DOI
91 L. M. Sheppard, "Porous Ceramics: Processing and Applications," Ceram. Trans., 31 3-23 (1992).
92 P. Colombo, C. V. Ahmetoglu, and S. Costacurta, "Fabrication of Ceramic Components with Hierarchical Porosity," J. Mater. Sci., 45 [20] 5425-55 (2010).   DOI
93 B. V. M. Kumar and Y. W. Kim, "Processing of Polysiloxane-Derived Porous Ceramics: A Review," Sci. Technol. Adv. Mater., 11 044303 (2010).   DOI
94 T. Ohji and M. Fukushima, "Macro-Porous Ceramics: Processing and Properties," Int. Mater. Rev., 57 [2] 115-31 (2012).   DOI
95 P. Nguyen and C. Pham, "Innovative Porous SiC-based Materials: From Nanoscopic Understandings to Tunable Carriers Serving Catalytic Needs," Appl. Catal. A, 391 [1] 443-54 (2011).   DOI
96 A. Pokhrel, J. G. Park, G. H. Jho, J. Y. Kim, and I. J. Kim, "Controlling the Porosity of Particle Stabilized $Al_2O_3$ based Ceramics," J. Korean Ceram. Soc., 48 [6] 600-3 (2011).   DOI
97 U. T. Gonzenbach, A. R. Studart, E. Tervoort and L. J. Gauckler, "Tailoring the Microstructure of Particle-Stabilized Wet Foams," Langmuir, 23 [30] 1025-32 (2007).   DOI
98 I. Akartuna, A. R. Studart, E. Tervoort, U. T. Gonzenbach, and L. J. Gauckler, "Stabilization of Oil-in-Water Emulsions by Colloidal Particles Modified with Short Amphiphiles," Langmuir, 24 [14] 7161-68, (2008).   DOI
99 A. R. Studart, U. T. Gonzenbach, I. Akartuna, E. Tervoort, and L. J. Gauckler, "Materials from Foams and Emulsions Stabilized by Colloidal Particles," J. Mater. Chem., 17 [31] 3283-89 (2007).   DOI
100 N. Sarkar, J. G. Park, S. Mazumder, A. Pokhrel, C. G. Aneziris, and I. J. Kim, "$Al_2TiO_5$-Mullite Porous Ceramics from Particle Stabilized Wet Foam," Ceram. Int., 41 [5] 6306-11 (2015).   DOI
101 I. Aranberri, B. P. Binks, J. H. Clint, and P. D. I. Fletcher, "Synthesis of Macroporous Silica from Solid-Stabilised Emulsion Templates," J. Porous Mater., 16 [4] 429-37 (2009).   DOI
102 U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Ultrastable Particle-Stabilized Foams," Angew. Chem. Int. Ed., 45 3526-30 (2006).   DOI
103 E. Dickinson, R. Ettelaie, T. Kostakis, and B. S. Murray, "Factors Controlling the Formation and Stability of Air Bubbles Stabilized by Partially Hydrophobic Silica Nanoparticles," Langmuir, 20 [20] 8517-25 (2004).   DOI
104 W. Y. Jang, B. Basnet, J. G. Park, H. M. Lim, T. Y. Lim, and I. J. Kim, "Effect of Albumin Content on the Rheological Properties and Wet Foam Stability of Porous Ceramics," J. Ceram. Process. Res., 19 [4] 296-301 (2018).   DOI
105 I. Nettleship, "Applications of Porous Ceramics," Key Eng. Mater., 122 305-24 (1996).   DOI
106 T. H. Yoon, H. J. Lee, J. Yan, and D. P. Kim, "Fabrication of SiC-based Ceramic Microstructures from Preceramic Polymers with Sacrificial Templates and Lithographic Techniques-A Review," J. Ceram. Soc. Jpn., 114 [6] (2006).
107 R. Moreno and B. Ferrari, "Effect of the Slurry Properties on the Homogeneity of Alumina Deposits Obtained by Aqueous Electrophoretic Deposition," Mater. Res. Bull., 35 [6] 887-97 (2000).   DOI
108 W. Y. Jang, J. G. Park, I. S. Han, H. M. Lim, T. Y. Lim, and I. J. Kim, "Effect of Surfactant on Wet Foam Stability to SiC Porous Ceramics," J. Ceram. Process. Res., 18 [12] 887-93 (2017).   DOI
109 P. A. Smith and R. A. Haber, "Effect of Particle Packing on the Filtration and Rheology Behavior of Extended Size Distribution Alumina Suspensions," J. Am. Ceram. Soc., 78 [7] 1737-44 (1995).   DOI
110 N. Sarkar, J. G. Park, S. Mazumder, A. Pokhrel, C. G. Aneziris, and I. J. Kim, "Effect of Amphiphile Chain Length on Wet Foam Stability of Porous Ceramics," Ceram. Int., 41 [3] 4021-27 (2015).   DOI
111 J. Banhart, "Manufacture, Characterisation and Application of Cellular Metals and Metal Foams," Prog. Mater. Sci., 46 [6] 559-632 (2001).   DOI
112 W. Ramsden, "Separation of Solids in the Surface-Layers of Solutions and 'Suspensions'," Proc. R. Soc. London, 72 156-64 (1903).   DOI
113 I. Ya. Guzman, "Certain Principles of Formation of Porous Ceramic Structures. Properties and Applications (A Review)," Glass Ceram., 60 [9] 280-83 (2003).   DOI
114 P. Colombo and J. R. Hellmann, "Ceramic Foams from Preceramic Polymers," Mater. Res. Innovations, 6 [5] 260-72 (2002).   DOI
115 H. M. Princen and A. D. Kiss, "Rheology of Foams and Highly Concentrated Emulsions: IV. An Experimental Study of the Shear Viscosity and Yield Stress of Concentrated Emulsions," J. Colloid Interface Sci., 128 [1] 176-87 (1989).   DOI
116 W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics; 2nd Edition, Wiley, New York, 1976.
117 P. R. Garret, Defoaming: Theory and Industrial Applications; Marcel Dekker, New York, 1993.
118 T. Fukasawa M. Ando, T. Ohji, and S. Kanzaki, "Synthesis of Porous Ceramics with Complex Pore Structure by Freeze-Dry Processing," J. Am. Ceram. Soc., 84 [1] 230-32 (2001).   DOI
119 A. J. Wilson, Foams: Physics, Chemistry, and Structure; Springer Verlag, Berlin, 1989.
120 M. Davis, "Basic Physics of Foam Stability and Collapse," NAVAIR Naval Air Systems Command Naval Fuels & Lubricants CFT Rept. No. 441/21-009, June 2012.
121 D. Weaire and S. Hutzler, The Physics of Foams; Oxford University Press, New York, 1999.
122 D. Douglas, "The Physics of Foam-Introduction," pp. 1-26 in Physics of Soft Condensed Matter Lecture Series, Boulder, CO, 2002.
123 P. C. Himenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry; 3th Edition, Revised and Expanded, Dekker, New York, 1997.
124 C. Tuck and J. R. G. Evans, "Porous Ceramics Prepared From Aqueous Foams," J. Mater. Sci. Lett., 18 [13] 1003-5 (1999).   DOI
125 M. D. M. Innocentini, P. Sepulveda, V. R. Salvini, V. C. Pandolfelli, and J. R. Coury, "Permeability and Structure of Cellular Ceramics: A Comparison between Two Preparation Techniques," J. Am. Ceram. Soc., 81 [12] 3349-52 (1998).   DOI
126 P. Colombo, "Conventional and Novel Processing Methods for Cellular Ceramics," Philos. Trans. R. Soc., A, 364 [1838] 109-24 (2006).   DOI
127 B. Neirinck, J. Fransaer, O. V. der Biest, and J. Vleugels, "A Novel Route to Produce Porous Ceramics," J. Eur. Ceram. Soc., 29 [5] 833-36 (2009).   DOI
128 B. P. Binks, "Particles as Surfactants-Similarities and Differences," Curr. Opin. Colloid Interface Sci., 7 [1] 21-41 (2002).   DOI
129 P. Greil, "Advanced Engineering Ceramics," Adv. Mater., 14 [10] 709-16 (2002).   DOI
130 V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano Lopez, and J. Martinez-Fernandez, "Precursor Selection and its Role in the Mechanical Properties of Porous SiC Derived from Wood," Mater. Sci. Eng. A, 428 [1] 225-32 (2006).   DOI
131 F. Schuth, "Engineered Porous Catalytic Materlals," Annu. Rev. Mater. Res., 35 [1] 209-38 (2005).   DOI
132 K. Ishizaki, S. Komarnei, and M. Nanko, Porous Materials: Process Technology and Applications; Kluwer Academic Publishers, Boston, 1998.
133 R. Mouazer, I. Thijs, S. Mullens, and J. Luyten, "SiC Foams Produced by Gel Casting: Synthesis and Characterization," Adv. Eng. Mater., 6 [5] 340-43 (2004).   DOI
134 S. Barg, C. Soltmann, M. Andrade, D. Koch, and G. Grathwohl, "Cellular Ceramics by Direct Foaming of Emulsified Ceramic Powder Suspensions," J. Am. Ceram. Soc., 91 [9] 2823-29 (2008).   DOI
135 D. Megias-Alguacil, E. Tervoort, C. Cattin, and L. J. Gauckler, "Contact Angle and Adsorption Behavior of Carboxylic Acids on Alpha-$Al_2O_3$ Surfaces," J. Colloid Interface Sci., 353 [2] 512-18 (2011).   DOI
136 W. Y. Jang, J. G. Park, B. Basnet, K. T. Woo, I. S. Han, and I. J. Kim, "Highly Porous SiC Ceramics from Particle-Stabilized Suspension," J. Aust. Ceram. Soc., 53 [2] 657-65 (2017).   DOI
137 E. C. Hammel, O. L. R. Ighodaro, and O. I. Okoli, "Processing and Properties of Advanced Porous Ceramics: An Application Based Review," Ceram. Int., 40 [10] 15351-70 (2014).   DOI
138 S. Bhaskar, J. G. Park, I. J. Kim, B. H. Kang, and T. Y. Lim, "$ZrTiO_4$ Porous Ceramics Fabricated from Particle-Stabilized Wet Foam by Direct Foaming," J. Korean Phys. Soc., 68 [1] 77-82 (2016).   DOI
139 J. F. Poco, J. H. S. Jr., and L. W. Hrubesh, "Synthesis of High Porosity, Monolithic Alumina Aerogels," J. Non-Cryst. Solids, 283 [1-3] 57-63 (2001).
140 A. R. Studart, R. Libanori, A. Moreno, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, "Unifying Model for the Electrokinetic and Phase Behavior of Aqueous Suspensions Containing Short and Long Amphiphiles," Langmuir, 27 [19] 11835-44 (2011).   DOI
141 A. Pokhrel, J. Gyu Park, J. Sic Nam, D. Soo, and I. J. Kim, "Stabilization of Wet Foams for Porous Ceramics Using Amphiphilic Particles," J. Korean Ceram. Soc., 48 [5] 463-66 (2011).   DOI
142 C. Galassi, "Processing of Porous Ceramics: Piezoelectric Materials," J. Eur. Ceram. Soc., 26 [14] 2951-58 (2006).   DOI
143 O. Lyckfeldt and J. M. F. Ferreira, "Processing of Porous Ceramics by 'Starch Consolidation'," J. Eur. Ceram. Soc., 18 [2] 131-40 (1998).   DOI
144 J. Saggio-Woyansky, C. E. Scott, and W. P. Minnear, "Processing of Porous Ceramics," Am. Ceram. Soc. Bull., 71 [11] 1674-82 (1992).
145 H. R. Ramay and M. Zhang, "Preparation of Porous Hydroxyapatite Scaffolds by Combination of the Gel-Casting and Polymer Sponge Methods," Biomaterials, 24 [19] 3293-302 (2003).   DOI
146 T. Isobe, Y. Kameshima, A. Nakajima, K. Okada, and Y. Hotta, "Gas Permeability and Mechanical Properties of Porous Alumina Ceramics with Unidirectionally Aligned Pores," J. Eur. Ceram. Soc., 27 [1] 53-9 (2007).   DOI
147 N. Sarkar, K. S. Lee, J. G. Park, S. Mazumder, C. G. Aneziris, and I. J. Kim, "Mechanical and Thermal Properties of Highly Porous $Al_2TiO_5$-Mullite Ceramics," Ceram. Int., 42 [2] 3548-55 (2016).   DOI
148 S. Bhaskar, J. G. Park, S. W. Kim, H. T. Kim, and I. J. Kim, "Effect of Surfactant on Adsorption Free Energy and Laplace Pressure of Wet Foam Stability to Porous Ceramics," J. Ceram. Proc. Res., 16 [1] 1-4 (2015).   DOI
149 C. R. Rambo and H. Sieber, "Novel Synthetic Route to Biomorphic $Al_2O_3$ Ceramics," Adv. Mater., 17 [8] 1088-91 (2005).   DOI
150 E. C. Hammel, O. L. R. Ighodaro, and O. I. Okoli, "Processing and Properties of Advanced Porous Ceramics: An Application Based Review," Ceram. Int., 40 [10, Part A] 15351-70 (2014).   DOI
151 C. Chuanuwatanakul, C. Tallon, D. E. Dunstan, and G. V. Franks, "Producing Large Complex-Shaped Ceramic Particle Stabilized Foams," J. Am. Ceram. Soc., 96 [5] 1407-13 (2013).   DOI
152 G. Kaptay, "Interfacial Criteria for Stabilization of Liquid Foams by Solid Particles," Colloids Surf., A, 230 [1] 67-80 (2003).   DOI
153 Y. Q. Sun and T. Gao, "The Optimum Wetting Angle for the Stabilization of Liquid-Metal Foams by Ceramic Particles: Experimental Simulations," Metall. Mater. Trans. A, 33 [10] 3285-92 (2002).   DOI
154 N. Sarkar, J. G. Park, S. Mazumder, and I. J. Kim, "Stabilization of Nano-Particles in Concentrated Colloidal Suspension to Porous Ceramics," J. Ceram. Process. Res., 16 [2] 272-25 (2015).   DOI
155 G. Kaptay, "On the Equation of the Maximum Capillary Pressure Induced by Solid Particles to Stabilize Emulsions and Foams and on the Emulsion Stability Diagrams," Colloids Surf., A, 282-283 387-401 (2006).   DOI
156 L. A. Pugnaloni, E. Dickinson, R. Ettelaie, A. R. Mackie, and P. J. Wilde, "Competitive Adsorption of Proteins and Low-Molecular-Weight Surfactants: Computer Simulation and Microscopic Imaging," Adv. Colloid Interface Sci., 107 [1] 27-49 (2004).   DOI
157 S. Bhaskar, J. G. Park, I. S. Han, M. J. Lee, T. Y. Lim, and I. J. Kim, "Particle Stabilized Wet Foam to Prepare $SiO_2$-SiC Porous Ceramics by Colloidal Processing," J. Korean Ceram. Soc., 52 [6] 455-61 (2015).   DOI
158 B. S. Murray, "Stabilization of Bubbles and Foams," Curr. Opin. Colloid Interface Sci., 12 [4] 232-41 (2007).   DOI
159 F. Tang, H. Fudouzi, T. Uchikoshi, and Y. Sakka, "Preparation of Porous Materials with Controlled Pore Size and Porosity," J. Eur. Ceram. Soc., 24 [2] 341-44 (2004)   DOI
160 N. Sarkar, J. G. Park, S. Mazumder, C. G. Aneziris, and I. J. Kim, "Processing of Particle Stabilized $Al_2TiO_5-ZrTiO_4$ Foam to Porous Ceramics," J. Eur. Ceram. Soc., 35 [14] 3969-76 (2015).   DOI
161 T. S. Horozov, "Foams and Foam Films Stabilised by Solid Particles," Curr. Opin. Colloid Interface Sci., 13 [3] 134-40 (2008).   DOI
162 P. C. Hidber, T. J. Graule, and L. J. Gauckler, "Influence of the Dispersant Structure on Properties of Electrostatically Stabilized Aqueous Alumina Suspensions," J. Eur. Ceram. Soc., 17 [2] 239-49 (1997).   DOI
163 B. Basnet, N. Sarkar, J. G. Park, S. Mazumder, and I. J. Kim, "$Al_2O_3-TiO_2/ZrO_2-SiO_2$ based Porous Ceramics from Particle-Stabilized Wet Foam," J. Adv. Ceram., 6 [2] 129-38 (2017).   DOI
164 S. Bhaskar, J. G. Park, G. H. Cho, S. Y. Kim, and I. J. Kim, "Wet Foam Stability and Tailoring Microstructure of Porous Ceramics Using Polymer Beads," Adv. Appl. Ceram., 114 [6] 333-37 (2015).   DOI