• 제목/요약/키워드: Functional matrix

검색결과 574건 처리시간 0.022초

Effect of Surface Modifying Agents Towards Enhancing Performance of Waste Gypsum Based PBAT Composite

  • Kong, Tae Woong;Kim, In Tae;Sinha, Tridib Kumar;Moon, Junho;Kim, Dong Ho;Kim, Inseon;Na, Kwangyong;Kim, Min-Woo;Kim, Hye-Lin;Hyeong, Taegyeong;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • 제55권4호
    • /
    • pp.347-353
    • /
    • 2020
  • Stearic acid (SA), polyethylene glycol (PEG), and malic acid (MA) have been used to modify the surface of waste gypsum to develop corresponding poly (butylene adipate-co-terephthalate) (PBAT) composites. According to the mechanical properties, MA-treated gypsum (MA-gypsum) showed the best performance, whereas SA-gypsum showed the worst performance. In contrast to SA and PEG (having -COOH and -OH as polar functional groups, respectively), the presence of both -OH and -COOH in MA is responsible for the superior surface treatment of gypsum and its better dispersion in the polymer matrix (as revealed by FE-SEM analyses). The presence of long aliphatic chain in SA is supposed to inhibit the dispersion of SA-gypsum. Further, the performance of MA-gypsum/PBAT was enhanced by adding polylactic acid (PLA). The maximum optimized contents of MA-gypsum and PLA are 20 and 7.5 wt% for developing a high-performance PBAT composite.

Study on the Characteristic of Elastomer Composite Containing Tungsten Powder

  • Chung, Kyungho
    • Elastomers and Composites
    • /
    • 제56권1호
    • /
    • pp.6-11
    • /
    • 2021
  • In order to develop an ultra-high-density elastomeric material for substitution of steel dynamic dampers, a new curing system and technique for high-loading of the filler were examined in this study. Mechanochemical modification of chloroprene rubber (MAH-g-CR) using an internal mixer was carried out with maleic anhydride (MAH) as a reactive monomer. The optimum amount of MAH was 10 phr and the efficient grafting of MAH on CR could be achieved at a mixing temperature of 100℃. After preparing MAH-g-CR, 50 mol% epoxidized natural rubber (ENR 50) was blended with MAH-g-CR to develop a "self-curable rubber blend system" via reaction between the functional groups of the elastomeric matrices without the curing agent and additives. The content of ENR 50 was fixed at 30 wt.% throughout evaluation of the curing behavior of the MAH-g-CR/ENR blend. Tungsten powder was added to the MAH-g-CR/ENR matrix up to 60 vol.% to obtain ultra-high-density, and the maximum density obtained was 7.57 g/㎤. Stable ts2 (scorch time) and t90 (90% cure time) could be obtained even when tungsten powder was incorporated up to 60 vol.%. In addition, the tensile strength and damping properties of MAH-g-CR/ENR containing 60 vol.% of tungsten were better than those of CR containing 60 vol.% of tungsten.

마코프 지연을 갖는 네트워크 제어 시스템을 위한 상태 궤환 제어기 설계 (A State Feedback Controller Design for a Networked Control System with a Markov Delay)

  • 양장훈
    • 한국항행학회논문지
    • /
    • 제24권6호
    • /
    • pp.549-556
    • /
    • 2020
  • 이 논문에서는 마코프 프로세스로 모델링되는 전송 오류나 전송 지연이 있는 네트워크 제어 시스템을 위한 제어기 설계 방법들을 제안한다. 마코프 지연을 갖는 제어 시스템을 위한 안정화 조건을 지연 의존적인 리아프노프-크라소프스키 범함수가 증가된 제어 시스템의 리아프노프 함수와 동일한 형태를 갖는다는 점을 이용하여 찾는다. 유도된 안정화 조건으로부터 복잡도를 줄이기 위한 수 개의 제어 설계기 방법을 제안한다. 모의 실험을 통하여 제안된 방법 중 행렬 변수의 탐색 공간을 블록 대각 행렬로 제한하는 제한 부분 공간 방법이 성능과 복잡도 사이에서 가장 좋은 트레이드오프를 제공함을 확인되었다.

Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate

  • Behdinan, Kamran;Moradi-Dastjerdi, Rasool
    • Advances in nano research
    • /
    • 제12권6호
    • /
    • pp.593-603
    • /
    • 2022
  • The critical buckling temperature rise of a newly proposed piezoelectrically active sandwich plate (ASP) has been investigated in this work. This structure includes a porous polymeric layer integrated between two piezoelectric nanocomposite layers. The piezoelectric material is made of a passive polymeric material that is activated by lead-free nanowires (NWs) of zinc oxide (ZnO) embedded inside the matrix. In both nanocomposite layers and porous core, functional graded (FG) patterns have been considered for the distributions of ZnO NWs and voids, respectively. By adopting a higher-order theory of plates, the governing equations of thermal buckling are obtained. This set of equations is then treated using an extended mesh-free solution. The effects of plate dimensions, porosity states, and the nanowire parameters have been investigated on the critical buckling temperature rises of the proposed lightweight ASPs with different boundary conditions. The results disclose that the use of porosities in the core and/or mixing ZnO NWs in the face sheets substantially arise the critical buckling temperatures of the newly proposed active sandwich plates.

An energy-based vibration model for beam bridges with multiple constraints

  • Huang, Shiping;Zhang, Huijian;Chen, Piaohua;Zhu, Yazhi;Zuazua, Enrique
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.41-53
    • /
    • 2022
  • We developed an accurate and simple vibration model to calculate the natural frequencies and their corresponding vibration modes for multi-span beam bridges with non-uniform cross-sections. A closed set of characteristic functions of a single-span beam was used to construct the vibration modes of the multi-span bridges, which were considered single-span beams with multiple constraints. To simplify the boundary conditions, the restraints were converted into spring constraints. Then the functional of the total energy has the same form as the penalty method. Compared to the conventional penalty method, the penalty coefficients in the proposed approach can be calculated directly, which can avoid the iteration process and convergence problem. The natural frequencies and corresponding vibration modes were obtained via the minimum total potential energy principle. By using the symmetry of the eigenfunctions or structure, the matrix size can be further reduced, which increases the computational efficiency of the proposed model. The accuracy and efficiency of the proposed approach were validated by the finite element method.

Fine structure of the intercalated disc and cardiac junctions in the black widow spider Latrodectus mactans

  • Yan Sun;Seung-Min Lee;Bon-Jin Ku;Myung-Jin Moon
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.20.1-20.9
    • /
    • 2020
  • Arthropods have an open circulatory system with a simple tubular heart, so it has been estimated that the contractile pumping structure of the cardiac muscle will be less efficient than that of vertebrates. Nevertheless, certain arthropods are known to have far superior properties and characteristics than vertebrates, so we investigated the fine structural features of intercalated discs and cardiac junctions of cardiac muscle cells in the black widow spider Latrodectus mactans. Characteristically, the spider cardiac muscle has typical striated features and represents a functional syncytium that supports multiple connections to adjacent cells by intercalated discs. Histologically, the boundary lamina of each sarcolemma connects to the basement membrane to form an elastic sheath, and the extracellular matrix allows the cells to be anchored to other tissues. Since the intercalated disc is also part of sarcolemma, it contains gap junctions for depolarization and desmosomes that keep the fibers together during cardiac muscle contraction. Furthermore, fascia adherens and macula adherens (desmosomes) were also identified as cell junctions in both sarcolemma and intercalated discs. To enable the coordinated heartbeat of the cardiac muscle, the muscle fibers have neuronal innervations by multiple axons from the motor ganglion.

식물성 활성탄을 활용한 시멘트 경화체의 특성 (Properties of Cement Matrix Using Vegetable Activated Carbon)

  • 이재훈;박채울;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.138-139
    • /
    • 2020
  • With the rapid progress of industrialization, indoor air quality is a very important factor for modern people who spend most of their day indoors. The recent issue of fine dust and radon on the portal site's popularity search shows that interest in indoor air quality has increased. Fine dust causes respiratory diseases, and radon causes severe lung cancer. The new material was tested using plant activated carbon, palm activated carbon and bamboo activated carbon. Both palm activated carbon and bamboo activated carbon are porous materials and generate smooth physical adsorption. As a result of the experiment, both the activated carbon tends to gradually decrease in strength and fluidity as the replacement ratio increases. The reason for this is that both activated carbons have the property of absorbing moisture, so it is judged that the strength is lowered by absorbing moisture necessary for curing. In the case of fluidity, it is judged that the fluidity is reduced by absorbing the moisture required for the flow. In the future, if the problem of the color of the finished cured body is compensated, it will be possible to manufacture a functional finishing board to replace the existing interior finishing material.

  • PDF

Facile Synthesis of Bio-Composite Films Obtained from Sugarcane Bagasse and Cardboard Waste

  • Satish Kumar Singh;Sweety Verma;Himanshu Gupta;Avneesh Kumar Gehlaut;Suantak Kamsonlian;Surya Narain Lal;Ankur Gaur;Sanjeev Maken
    • Korean Chemical Engineering Research
    • /
    • 제61권4호
    • /
    • pp.584-590
    • /
    • 2023
  • In this study, we focus on the recycling of cardboard waste and sugarcane bagasse (SCB) for the preparation of carboxymethyl cellulose (CMC) and its conversion into a biodegradable film. Sodium alginate (SA) was added to form a biodegradable composite film. SA was used to increase film permeability. Glycerol, which is a plasticizer, was used to increase the tensile strength (TS) and film expansion. To characterize the CMC, X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy were used. The addition of olive oil to the CMC-SA matrix highlighted its antimicrobial property against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). A slight decrease in tensile strength was observed with the addition of olive oil (OO), which improved the functional properties of the control films as well as lowered moisture content and water solubility. But considering all other factors, the composite films obtained from sugarcane bagasse and cardboard waste incorporated with olive oil are suitable for applications in the field of food packaging.

탄소섬유 표면에의 고분자 전착과 복합재료 물성(I) - MVEMA와 EMA의 전착 - (Electrodeposition onto the Surface of Carbon Fiber and its Application to Composites(I) - Electrodeposition of MVEMA and EMA)

  • 김민영;김지홍;김원호;김부웅;황병선;최영선
    • 공업화학
    • /
    • 제9권6호
    • /
    • pp.894-900
    • /
    • 1998
  • 탄소섬유 복합재료의 층간전단 강도의 손상없이 충격강도를 향상시키기 위하여 반응성을 가진 유연한 고분자 물질 (MVEMA(poly(methyl vinyl ether-co-maleic anhydride)) 및 EMA (poly(ethylene-co-maleic anhydride)) 전착을 이용하여 탄소섬유와 에폭시 기지재료 사이에 계면상으로 도입하는 방법을 고려하였다. 따라서 계면상 물질의 MVEMA 및 EMA의 탄소섬유에의 전착수율에 대한 공정변수의 영향을 체계적으로 평가하였다. 염기성 수용액상에서 anhydride기를 가진 고분자의 전착 메카니즘은 -OH기의 공격에 의한 $RCOO^-$기의 생성에 기인함을 적외선 분광분석으로 확인하였다. 농도, 전류밀도, 반응시간의 증가에 따라 전착수율이 증가하였으며, 과도한 산소 버블의 발생은 전착된 고분자를 탈착시켜 수율을 감소시켰다. 흐르는 물에서 세척을 할 경우 탄소섬유와의 결합력이 없는 전착고분자는 쉽게 제거되어 0.5 wt% 정도의 전착 고분자만 잔류하였다.

  • PDF

반복적 경두부 자기자극이 운동학습과 뇌 운동영역 활성화에 미치는 영향 : 예비연구 (Effect of rTMS on Motor Sequence Learning and Brain Activation : A Preliminary Study)

  • 박지원;김종만;김연희
    • 한국전문물리치료학회지
    • /
    • 제10권3호
    • /
    • pp.17-27
    • /
    • 2003
  • Repetitive transcranial magnetic stimulation (rTMS) modulates cortical excitability beyond the duration of the rTMS trains themselves. Depending on rTMS parameters, a lasting inhibition or facilitation of cortical excitability can be induced. Therefore, rTMS of high or low frequency over motor cortex may change certain aspects of motor learning performance and cortical activation. This study investigated the effect of high and low frequency subthreshold rTMS applied to the motor cortex on motor learning of sequential finger movements and brain activation using functional MRI (fMRI). Three healthy right-handed subjects (mean age 23.3) were enrolled. All subjects were trained with sequences of seven-digit rapid sequential finger movements, 30 minutes per day for 5 consecutive days using their left hand. 10 Hz (high frequency) and 1 Hz (low frequency) trains of rTMS with 80% of resting motor threshold and sham stimulation were applied for each subject during the period of motor learning. rTMS was delivered on the scalp over the right primary motor cortex using a figure-eight shaped coil and a Rapid(R) stimulator with two Booster Modules (Magstim Co. Ltd, UK). Functional MRI (fMRI) was performed on a 3T ISOL Forte scanner before and after training in all subjects (35 slices per one brain volume TR/TE = 3000/30 ms, Flip angle $60^{\circ}$, FOV 220 mm, $64{\times}64$ matrix, slice thickness 4 mm). Response time (RT) and target scores (TS) of sequential finger movements were monitored during the training period and fMRl scanning. All subjects showed decreased RT and increased TS which reflecting learning effects over the training session. The subject who received high frequency rTMS showed better performance in TS and RT than those of the subjects with low frequency or sham stimulation of rTMS. In fMRI, the subject who received high frequency rTMS showed increased activation of primary motor cortex, premotor, and medial cerebellar areas after the motor sequence learning after the training, but the subject with low frequency rTMS showed decreased activation in above areas. High frequency subthreshold rTMS on the motor cortex may facilitate the excitability of motor cortex and improve the performance of motor sequence learning in normal subject.

  • PDF