Browse > Article
http://dx.doi.org/10.12989/anr.2022.12.6.593

Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate  

Behdinan, Kamran (Advanced Research Laboratory for Multifunctional Lightweight Structures (ARL-MLS), Department of Mechanical & Industrial Engineering, University of Toronto)
Moradi-Dastjerdi, Rasool (Advanced Research Laboratory for Multifunctional Lightweight Structures (ARL-MLS), Department of Mechanical & Industrial Engineering, University of Toronto)
Publication Information
Advances in nano research / v.12, no.6, 2022 , pp. 593-603 More about this Journal
Abstract
The critical buckling temperature rise of a newly proposed piezoelectrically active sandwich plate (ASP) has been investigated in this work. This structure includes a porous polymeric layer integrated between two piezoelectric nanocomposite layers. The piezoelectric material is made of a passive polymeric material that is activated by lead-free nanowires (NWs) of zinc oxide (ZnO) embedded inside the matrix. In both nanocomposite layers and porous core, functional graded (FG) patterns have been considered for the distributions of ZnO NWs and voids, respectively. By adopting a higher-order theory of plates, the governing equations of thermal buckling are obtained. This set of equations is then treated using an extended mesh-free solution. The effects of plate dimensions, porosity states, and the nanowire parameters have been investigated on the critical buckling temperature rises of the proposed lightweight ASPs with different boundary conditions. The results disclose that the use of porosities in the core and/or mixing ZnO NWs in the face sheets substantially arise the critical buckling temperatures of the newly proposed active sandwich plates.
Keywords
active sandwich plates; piezoelectric nanocomposite; porous material; thermal buckling; zinc oxide nanowires;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Ebrahimi, F., Barati, M.R., Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory'', Adv. Nano Res., 6(2), 93-112. https://doi.org/10.12989/ANR.2018.6.2.093.   DOI
2 Wang, E., Tehrani, M.S., Zare, Y. and Rhee, K.Y. (2018), "A new methodology based on micromechanics model to predict the tensile modulus and network formation in polymer/CNT nanocomposites'', Colloid Surface A, 550, 20-26. https://doi.org/10.1016/j.colsurfa.2018.04.032.   DOI
3 Tounsi, A., Benguediab, S., Bedia, E.A.A., Semmah, A., Zidour, M., Tounsi, A., Benguediab, S., Bedia, E.A.A., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes'', Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/ANR.2013.1.1.001.   DOI
4 Nguyen, L.B., Nguyen, N.V, Thai, C.H., Ferreira, A.M.J. and Nguyen-xuan, H. (2019), "An isogeometric Bezier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets'', Compos. Struct., 214, 227-245. https://doi.org/10.1016/j.compstruct.2019.01.077.   DOI
5 Pan, S., Dai, Q., Safaei, B., Qin, Z. and Chu, F. (2021), "Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams'', Thin-Walled Struct., 166, 108127. https://doi.org/10.1016/J.TWS.2021.108127.   DOI
6 Arshid, E., Amir, S. and Loghman, A. (2021a), "Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers'', J. Sandw. Struct. Mater., 23(8), 3836 -3877. https://doi.org/10.1177/1099636220955027.   DOI
7 Dinh Khoa, N., Thi Thiem, H. and Duc, N.D. (2019), "Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy's third-order shear deformation shell theory'', Mech. Adv. Mater. Struct., 26(3), 248-259. https://doi.org/10.1080/15376494.2017.1341583.   DOI
8 Fan, F., Cai, X., Sahmani, S. and Safaei, B. (2021), "Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity'', Compos. Struct., 262, 113604. https://doi.org/10.1016/J.COMPSTRUCT.2021.113604.   DOI
9 Heidari, F., Afsari, A., Janghorban, M., Heidari, F., Afsari, A. and Janghorban, M. (2020), "Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects'', Adv. Nano Res., 9(3), 193-210. https://doi.org/10.12989/ANR.2020.9.3.193.   DOI
10 Ansari, E. and Setoodeh, A. (2019), "Applying isogeometric approach for free vibration, mechanical, and thermal buckling analyses of functionally graded variable-thickness blades'', Artic. J. Vib. Control, 26, 23-24. https://doi.org/10.1177/1077546320915336.   DOI
11 Arshid, E., Amir, S. and Loghman, A. (2021b), "Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates'', Aerosp. Sci. Technol., 111, 106561. https://doi.org/10.1016/J.AST.2021.106561.   DOI
12 Yang, Z., Liu, A., Lai, S.K., Safaei, B., Lv, J., Huang, Y. and Fu, J. (2022), "Thermally induced instability on asymmetric buckling analysis of pinned-fixed FG-GPLRC arches'', Eng. Struct., 250, 113243. https://doi.org/10.1016/J.ENGSTRUCT.2021.113243.   DOI
13 Tao, C. and Dai, T. (2022), "Modified couple stress-based nonlinear static bending and transient responses of sizedependent sandwich microplates with graphene nanocomposite and porous layers'', Thin-Walled Struct., 171, 108704. https://doi.org/10.1016/J.TWS.2021.108704.   DOI
14 Trinh, M.C. and Kim, S.E. (2019), "Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment'', Aerosp. Sci. Technol., 84, 672-685. https://doi.org/10.1016/j.ast.2018.09.018.   DOI
15 Yaghoobi, H., Fereidoon, A., Khaksari Nouri, M. and Mareishi, S. (2015), "Thermal buckling analysis of piezoelectric functionally graded plates with temperature-dependent properties'', Mech. Adv. Mater. Struct., 22(10), 864-875. https://doi.org/10.1080/15376494.2013.864436.   DOI
16 Yu, T., Quoc Bui, T., Yin, S., Doan, H., Wu, C.T., Van Do, T. and Tanaka, S. (2016), "On the thermal buckling analysis of functionally graded plates with internal defects using extended isogeometric analysis'', Compos. Struct., 136, 684-695. https://doi.org/10.1016/j.compstruct.2015.11.002.   DOI
17 Sobhy, M. (2021), "Analytical buckling temperature prediction of FG piezoelectric sandwich plates with lightweight core'', Mater. Res. Express, 8, 95704. https://doi.org/10.1088/2053-1591/ac28b9.   DOI
18 Yasmin, A., Luo, J.J., Abot, J.L. and Daniel, I.M. (2006), "Mechanical and thermal behavior of clay/epoxy nanocomposites'', Compos. Sci. Technol., 66(14), 2415-2422. https://doi.org/10.1016/j.compscitech.2006.03.011.   DOI
19 Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates'', Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/J.COMPSTRUCT.2010.06.012.   DOI
20 Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates'', Compos. Struct., 90, 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005.   DOI
21 Angelou, A., Norman, C., Miran, N., Albers, S., Moradi-Dastjerdi, R. and Behdinan, K. (2021), "An eco-friendly, biocompatible and reliable piezoelectric nanocomposite actuator for the new generation of microelectronic devices'', Eur. Phys. J. Plus, 136, 678. https://doi.org/10.1140/epjp/s13360-021-01653-z.   DOI
22 Singh, S., Singh, J. and Shukla, K.K. (2013), "Buckling of laminated composite plates subjected to mechanical and thermal loads using meshless collocations'', J. Mech. Sci. Technol., 27(2), 327-336. https://doi.org/10.1007/s12206-012-1249-y.   DOI
23 Moradi-Dastjerdi, R. and Behdinan, K. (2021d), "Temperature effect on free vibration response of a smart multifunctional sandwich plate'', J. Sandw. Struct. Mater., 23(6), 2399-2421. Available at: https://doi.org/10.1177/1099636220908707.   DOI
24 Moradi-Dastjerdi, R., Radhi, A. and Behdinan, K. (2020), "Damped dynamic behavior of an advanced piezoelectric sandwich plate'', Compos. Struct., 243, 112243. https://doi.org/10.1016/j.compstruct.2020.112243.   DOI
25 Berger, H., Kari, S., Gabbert, U., Rodriguez-Ramos, R., Guinovart, R., Otero, J.A. and Bravo-Castillero, J. (2005), "An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites'', Int. J. Solids Struct., 42(21-22), 5692-5714. https://doi.org/10.1016/j.ijsolstr.2005.03.016.   DOI
26 Cetkovic, M. (2016), "Thermal buckling of laminated composite plates using layerwise displacement model'', Compos. Struct., 142, 238-253. https://doi.org/10.1016/j.compstruct.2016.01.082.   DOI
27 Moradi-Dastjerdi, R. and Behdinan, K. (2021a), "Dynamic performance of piezoelectric energy harvesters with a multifunctional nanocomposite substrate'', Appl. Energy, 293, 116947. https://doi.org/10.1016/j.apenergy.2021.116947.   DOI
28 Meschino, M., Wang, L., Xu, H., Moradi-Dastjerdi, R. and Behdinan, K. (2021), "Low-frequency nanocomposite piezoelectric energy harvester with embedded zinc oxide nanowires'', Polym. Compos., 42, 4573-4585. https://doi.org/10.1002/pc.26169.   DOI
29 Mirzaei, M. and Kiani, Y. (2017), "Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation'', Compos. Struct., 180, 606-16. https://doi.org/10.1016/j.compstruct.2017.08.057.   DOI
30 Mishra, N., Krishna, B., Singh, R. and Das, K. (2017), "Evaluation of effective elastic, piezoelectric, and dielectric properties of SU8/ZnO nanocomposite for vertically integrated nanogenerators using finite element method'', J. Nanomater., 2017, 1924651. https://doi.org/10.1155/2017/1924651.   DOI
31 Moradi-Dastjerdi, R. and Behdinan, K. (2021c), "Stress waves in thick porous graphene-reinforced cylinders under thermal gradient environments'', Aerosp. Sci. Technol., 110, 106476. https://doi.org/10.1016/j.ast.2020.106476.   DOI
32 Setoodeh, A.R., Ghorbanzadeh, M. and Malekzadeh, P. (2012), "A two-dimensional free vibration analysis of functionally graded sandwich beams under thermal environment'', Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 226(12), 2860-2873. https://doi.org/10.1177/0954406212440669.   DOI
33 Kamarian, S., Bodaghi, M., Isfahani, R.B. and Song, J.I. (2021), "Thermal buckling analysis of sandwich plates with soft core and CNT-Reinforced composite face sheets'', J. Sandw. Struct. Mater., 23(8), 3606-3644. https://doi.org/10.1177/1099636220935557.   DOI
34 Lancaster, P. and Salkauskas, K. (1981), "Surface Generated by Moving Least Squares Methods'', Math. Comput., 37, 141-158.   DOI
35 Mehar, K., Panda, S.K., Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure'', Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/ANR.2019.7.3.181.   DOI
36 Mekerbi, M., Benyoucef, S., Mahmoudi, A., Bourada, F. and Tounsi, A. (2019), "Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution'', Struct. Eng. Mech., 72(4), 513-524. https://doi.org/10.12989/SEM.2019.72.4.513.   DOI
37 O zgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J. and Morko, H. (2005), "A comprehensive review of ZnO materials and devices'', J. Appl. Phys., 1-103. https://doi.org/10.1063/1.1992666.   DOI
38 Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect'', Compos. Part B, 166(December 2018), 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074.   DOI
39 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.
40 Safaei, B. (2021), "Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces'', Eur. Phys. J. Plus, 136, 646. https://doi.org/10.1140/epjp/s13360-021-01632-4.   DOI
41 Setoodeh, A.R., Shojaee, M. and Malekzadeh, P. (2018), "Application of transformed differential quadrature to free vibration analysis of FG-CNTRC quadrilateral spherical panel with piezoelectric layers'', Comput. Methods Appl. Mech. Engrg., 335, 510-537. https://doi.org/10.1016/j.cma.2018.02.022.   DOI
42 Setoodeh, A.R., Shojaee, M. and Malekzadeh, P. (2019), "Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core'', Compos. Part B Eng., 165, 798-822. https://doi.org/10.1016/J.COMPOSITESB.2019.01.022.   DOI
43 Shen, H.S. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I : Axially-loaded shells'', Compos. Struct., 93(8), 2096-2108. https://doi.org/10.1016/j.compstruct.2011.02.011.   DOI
44 Moradi-Dastjerdi, R. and Behdinan, K. (2021b), "Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers'', Appl. Math. Model., 96, 66-79. https://doi.org/10.1016/j.apm.2021.03.013.   DOI
45 Tuloup, C., Harizi, W., Aboura, Z., Meyer, Y., Khellil, K. and Lachat, R. (2019), "On the use of in-situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: A literature review'', Compos. Struct., 215, 127-149. https://doi.org/10.1016/J.COMPSTRUCT.2019.02.046.   DOI
46 Zenkour, A.M. and Aljadani, M.H. (2019), "Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates'', Eur. J. Mech. A/Solids, 78, 103835. https://doi.org/10.1016/j.euromechsol.2019.103835.   DOI
47 Zhang, L., Zhang, F., Qin, Z., Han, Q., Wang, T. and Chu, F. (2022), "Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring'', Energy, 238, 121770. https://doi.org/10.1016/J.ENERGY.2021.121770.   DOI
48 Mosallaie Barzoki, A.A., Ghorbanpour Arani, A., Kolahchi, R. and Mozdianfard, M.R. (2012), "Electro-thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core'', Appl. Math. Model., 36(7), 2983-2995. https://doi.org/10.1016/j.apm.2011.09.093.   DOI
49 Sobhani, E. and Masoodi, A.R. (2021), "Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal and hyperboloidal shells based on multiscale approaches'', Aerosp. Sci. Technol., 119, 107111. https://doi.org/10.1016/J.AST.2021.107111.   DOI
50 Moradi-Dastjerdi, R. and Behdinan, K. (2020a), "Stability analysis of multifunctional smart sandwich plates with graphene nanocomposite and porous layers'', Int. J. Mech. Sci., 167, 105283. https://doi.org/10.1016/j.ijmecsci.2019.105283.   DOI
51 Malekzadeh, P., Setoodeh, A.R. and Beni, A.A. (2011), "Small scale effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in an elastic medium'', Compos. Struct., 93(8), 2083-2089. https://doi.org/10.1016/J.COMPSTRUCT.2011.02.013.   DOI
52 Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT'', Aerosp. Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020.   DOI
53 Zhao, S., Zhao, Z., Yang, Z., Ke, L.L., Kitipornchai, S. and Yang, J. (2020), "Functionally graded graphene reinforced composite structures: A review'', Eng. Struct., 110339. https://doi.org/10.1016/j.engstruct.2020.110339.   DOI
54 Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S., Behzad, Afshari, M., Sajad Mirjavadi, S., Shaaei, N. and Afshari, B.M. (2017), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam'', J. Therm. Stress., 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962.   DOI
55 Ebrahimi, F., Barati, M.R., Ebrahimi, F. and Barati, M.R. (2016), "An exact solution for buckling analysis of embedded piezoelectro- magnetically actuated nanoscale beams'', Adv. Nano Res., 4(2), 65-84. https://doi.org/10.12989/ANR.2016.4.2.065.   DOI
56 Foroutan, M. and Moradi-Dastjerdi, R. (2011), "Dynamic analysis of functionally graded material cylinders under an impact load by a mesh-free method'', Acta Mech., 219, 281-290. https://doi.org/10.1007/s00707-011-0448-4.   DOI
57 Jabbari, M., Hashemitaheri, M., Mojahedin, A. and Eslami, M.R. (2014), "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials'', J. Therm. Stress., 37(2), 202-220. https://doi.org/10.1080/01495739.2013.839768.   DOI
58 Kamarian, S., Bodaghi, M. and Song, J. (2020), "Hygrothermal effects on the buckling of soft-core sandwich plates with composite layered face sheets'', Polym. Compos., 41(10), 4144-4169. https://doi.org/10.1002/PC.25700.   DOI
59 Keshmiri, A., Wu, N. and Wang, Q. (2018), "A new nonlinearly tapered FGM piezoelectric energy harvester'', Eng. Struct., 173, 52-60. https://doi.org/10.1016/j.engstruct.2018.06.081.   DOI
60 Kundalwal, S.I. and Ray, M.C. (2016), "Smart damping of fuzzy fiber reinforced composite plates using 1-3 piezoelectric composites'', J. Vib. Control, 22(6), 1526-1546. https://doi.org/10.1177/1077546314543726.   DOI
61 Alian, A.R., Kundalwal, S.I. and Meguid, S.A. (2015), "Multiscale modeling of carbon nanotube epoxy composites'', Polym., 70, 149-160. https://doi.org/10.1016/j.polymer.2015.06.004.   DOI
62 Sobhani, E., Masoodi, A.R. and Ahmadi-Pari, A.R. (2021), "Vibration of FG-CNT and FG-GNP sandwich composite coupled Conical-Cylindrical-Conical shell'', Compos. Struct., 273, 114281. https://doi.org/10.1016/J.COMPSTRUCT.2021.114281.   DOI
63 Sobhani, E., Masoodi, A.R., Civalek, O. and Ahmadi-Pari, A.R. (2022a), "Agglomerated impact of CNT vs. GNP nanofillers on hybridization of polymer matrix for vibration of coupled hemispherical-conical-conical shells'', Aerosp. Sci. Technol., 120, 107257. https://doi.org/10.1016/J.AST.2021.107257.   DOI
64 Ghahramani, P., Behdinan, K., Moradi-Dastjerdi, R. and Naguib, H.E. (2022), "Theoretical and experimental investigation of MWCNT dispersion effect on the elastic modulus of flexible PDMS / MWCNT nanocomposites'', Nanotechnol. Rev., 11, 55-64. Available at: https://doi.org/10.1515/ntrev-2022-0006.   DOI
65 Moradi-Dastjerdi, R. and Behdinan, K. (2020b), "Thermo-electromechanical behavior of an advanced smart lightweight sandwich plate'', Aerosp. Sci. Technol., 106, 106142. https://doi.org/10.1016/j.ast.2020.106142.   DOI
66 Behdinan, K. and Moradi-Dastjerdi, R. (2021), Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation, John Wiley & Sons.
67 Zargar, O., Mollaghaee-Roozbahani, M., Bashirpour, M. and Baghani, M. (2019), "The application of Homotopy Analysis Method to determine the thermal response of convectiveradiative porous fins with temperature-dependent properties'', Int. J. Appl. Mech. https://doi.org/10.1142/s1758825119500881.   DOI
68 Sobhani, E., Moradi-Dastjerdi, R., Behdinan, K., Masoodi, A.R. and Ahmadi-Pari, A.R. (2022b), "Multifunctional trace of various reinforcements on vibrations of three-phase nanocomposite combined hemispherical-cylindrical shells'', Compos. Struct., 279, 114798. https://doi.org/10.1016/j.compstruct.2021.114798.   DOI
69 Ahmadi, H. and Foroutan, K. (2020), "Nonlinear static and dynamic thermal buckling analysis of imperfect multilayer FG cylindrical shells with an FG porous core resting on nonlinear elastic foundation'', J. Therm. Stress., 43(5), 629-649. https://doi.org/10.1080/01495739.2020.1727802.   DOI
70 Akhras, G. and Li, W.C. (2010), "Three-dimensional thermal buckling analysis of piezoelectric antisymmetric angle-ply laminates using finite layer method'', Compos. Struct., 92(1), 31-38. https://doi.org/10.1016/J.COMPSTRUCT.2009.06.010.   DOI
71 Ansari, E., Setoodeh, A.R. and Rabczuk, T. (2020), "Isogeometricstepwise vibrational behavior of rotating functionally graded blades with variable thickness at an arbitrary stagger angle subjected to thermal environment'', Compos. Struct., 244, 112281. https://doi.org/10.1016/j.compstruct.2020.112281.   DOI
72 Bateni, M., Kiani, Y. and Eslami, M.R. (2013), "A comprehensive study on stability of FGM plates'', Int. J. Mech. Sci., 75, 134-44. https://doi.org/10.1016/j.ijmecsci.2013.05.014.   DOI
73 Bouazza, M. and Zenkour, A.M. (2020), "Hygro-thermomechanical buckling of laminated beam using hyperbolic refined shear deformation theory'', Compos. Struct., 252, 112689. https://doi.org/10.1016/J.COMPSTRUCT.2020.112689.   DOI
74 Tan, P. and Tong, L. (2001), "Micro-electromechanics models for piezoelectric-fiber-reinforced composite materials'', Compos. Sci. Technol., 61(5), 759-769. https://doi.org/10.1016/S0266-3538(01)00014-8.   DOI
75 Malekzadeh, P., Setoodeh, A.R. and Shojaee, M. (2018), "Vibration of FG-GPLs eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method'', Comput. Methods Appl. Mech. Eng., 340, 451-479. https://doi.org/10.1016/j.cma.2018.06.006.   DOI
76 Sobhy, M. and Zenkour, A.M. (2018), "Nonlocal Thermal and Mechanical Buckling of Nonlinear Orthotropic Viscoelastic Nanoplates Embedded in a Visco-Pasternak Medium'', Int. J. Appl. Mech., 10(8), 1850086. https://doi.org/10.1142/S1758825118500862.   DOI