Browse > Article
http://dx.doi.org/10.1186/s42649-020-00040-9

Fine structure of the intercalated disc and cardiac junctions in the black widow spider Latrodectus mactans  

Yan Sun (Department of Biological Sciences, Dankook University)
Seung-Min Lee (Department of Biological Sciences, Dankook University)
Bon-Jin Ku (Department of Biological Sciences, Dankook University)
Myung-Jin Moon (Department of Biological Sciences, Dankook University)
Publication Information
Applied Microscopy / v.50, no., 2020 , pp. 20.1-20.9 More about this Journal
Abstract
Arthropods have an open circulatory system with a simple tubular heart, so it has been estimated that the contractile pumping structure of the cardiac muscle will be less efficient than that of vertebrates. Nevertheless, certain arthropods are known to have far superior properties and characteristics than vertebrates, so we investigated the fine structural features of intercalated discs and cardiac junctions of cardiac muscle cells in the black widow spider Latrodectus mactans. Characteristically, the spider cardiac muscle has typical striated features and represents a functional syncytium that supports multiple connections to adjacent cells by intercalated discs. Histologically, the boundary lamina of each sarcolemma connects to the basement membrane to form an elastic sheath, and the extracellular matrix allows the cells to be anchored to other tissues. Since the intercalated disc is also part of sarcolemma, it contains gap junctions for depolarization and desmosomes that keep the fibers together during cardiac muscle contraction. Furthermore, fascia adherens and macula adherens (desmosomes) were also identified as cell junctions in both sarcolemma and intercalated discs. To enable the coordinated heartbeat of the cardiac muscle, the muscle fibers have neuronal innervations by multiple axons from the motor ganglion.
Keywords
Fine structure; Cardiac muscle; Intercalated disc; Cardiac junction; Spider; Latrodectus mactans;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Dewey, in Comparative Physilogy of the Heart: Current Trends, ed. by F. V. McCann. The structure and function of the intercalated disc in vertebrate cardiac muscle (Basel, Springer, 1969), pp. 10-28
2 E. Ehler, Cardiac cytoarchitecture - why the "hardware" is important for heart function! Biochim. Biophys. Acta 1863, 1857-1863 (2016)
3 R.F. Foelix, Biology of Spiders, 3rd edn. (Oxford University Press, Oxford, 2011)
4 M.S. Forbes, N. Sperelakis, Intercalated discs of mammalian heart: a review of structure and function. Tiss. Cell 17, 605-648 (1985)
5 D. Garrod, C. Martyn, Desmosome structure, composition and function. Biochimica et Biophysica Acta 1778, 572-587 (2008)
6 D.A. Goodenough, D.L. Paul, Gap junction. Cold Spring Harb. Perspect. Biol. 1, a002576 (2009)
7 A.M. Gordon, E. Homsher, M. Regnier, Regulation of contraction in striated muscle. Physiol. Rev. 80, 853-924 (2000)
8 S. Kawaguti, Electron microscopic study on the cardiac muscle of the horseshoe crab (Tachypleus tridentatus leach). Biol. J. Okayama Univ. 9, 11-26 (1963)
9 H. Kim, M.J. Moon, Fine structure of cardiac sarcomeres in the black widow spider Latrodectus mactans. Ent. Res. 48, 429-438 (2018)
10 R.A. Leyton, E.H. Sonnenblick, Cardiac muscle of the horseshoe crab, Limulus polyphemus (I) ultrastructure. J. Cell Biol. 48, 101-119 (1971)
11 Z. Maretic, in Ecophysiology of Spiders, ed. by W. Nentwig. Spider venom and their effect (Berlin, Springer-Verlag, 1987), pp. 142-159
12 N.J. Severs, Gap junction shape and orientation at the cardiac intercalated disk. Circul. Res. 65, 1458-1465 (1989)
13 T. Shimada, H. Kawazato, A. Yasuda, N. Ono, K. Sueda, Cytoarchitecture and intercalated disks of the working myocardium and the conduction system in the mammalian heart. Anat Rec A Discov Mol Cell Evol Biol 280, 940-951 (2004)
14 J.R. Sommer, R.A. Waugh, Ultrastructure of heart muscle. Environ. Health Persp. 26, 159-167 (1978)
15 R.J. Stenger, D. Spiro, The ultrastructure of mammalian cardiac muscle. J. Biophy. Biochem. Cytol. 9, 325-351 (1961)
16 A. Hartsock, W. James, Nelson, Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochem. Biophys. Acta 1778, 660-669 (2007)
17 P.K. Timms, R.B. Gibbons, Latrodectism - effects of the black widow spider bite. West J. Med 144, 315-317 (1986)
18 J. Ude, K. Richter, The submicroscopic morphology of the heart ganglion of the spider Tegenaria atrica (C.L. Koch) and its neuroendocrine relations to the myocard. Comp. Biochem. Physiol. 48A, 301-308 (1974)
19 R. Veeraraghavan, S. Poelzing, R.G. Gourdie, Intercellular electrical communication in the heart: A new, active role for the intercalated disk. Cell Commun. Adhes. 21, 161-167 (2014)
20 R.S. Vetter, G.K. Isbister, Medical aspects of spider bites. Annu. Rev. Entomol. 53, 409-429 (2008)
21 S. Goossens, B. Janssens, S. Bonne, R. de Rycke, F. Braet, J. van Hengel, F. van Roy, A unique and specific interaction between αT-catenin and plakophilin-2 in the area composita, the mixed-type junctional structure of cardiac intercalated discs. J. Cell Sci. 120, 2126-2136 (2007)
22 C.M. Borrmann, C. Grund, C. Kuhn, I. Hofmann, S. Pieperhoff, W.W. Franke, The area composita of adhering junctions connecting heart muscle cells of vertebrates. II. Colocalizations of desmosomal and fascia adherens molecules in the intercalated disk. Eur. J. Cell Biol. 85, 469-485 (2006)
23 E. Delva, D.K. Tucker, A.P. Kowalczyk, The desmosome. Cold Spring Harb. Perspect. Biol. 1, a002543 (2009)
24 D.W. Fawcett, N.S. McNutt, The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J. Cell Biol. 42, 1-45 (1969)
25 W.W. Franke, C.M. Borrmann, C. Grund, S. Pieperhoff, The area composita of adhering junctions connecting heart muscle cells of vertebrates (I) molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur. J. Cell Biol. 85, 69-82 (2006)
26 D.E. Gutstein, F. Liu, M.B. Meyers, A. Choo, G.I. Fishman, The organization of adherens junctions and desmosomes at the cardiac intercalated disc is independent of gap junctions. J. Cell Sci. 116, 875-885 (2003)
27 R.H. Adams, A. Schwartz, Comparative mechanisms for contraction of cardiac and skeletal muscle. Chest 78, 123-139 (1980)
28 C.S. Wirkner, Richter, evolutionary morphology of the circulatory system in Peracarida (Malacostraca; Crustacea). Cladistics 26, 143-167 (2010)
29 J.H. van Weerd, V.M. Christoffels, The formation and function of the cardiac conduction system. Development 143, 197-210 (2016)
30 M.J. Moon, Fine structure of the aggregate silk nodules in the orb-web spider Nephila clavata. Anim. Cells Sys. 22, 421-428 (2018)
31 P.M. Bennett, Riding the waves of the intercalated disc of the heart. Biophys. Rev. 10, 955-959 (2018)
32 C.R. Bursey, R.G. Sherman, Spider cardiac physiology. I. Structure and function of the cardiac ganglion. Comp. Gen. Pharmacol. 1, 160-170 (1970)
33 G. Hoyle, Comparative aspects of muscle. Annu. Rev. Physiol. 31, 43-84 (1969)
34 R.G. Gourdie, C.R. Green, N.J. Severs, Gap junction distribution in adult mammalian myocardium revealed by an anti-peptide antibody and laser scanning confocal microscopy. J. Cell Sci. 99, 41-55 (1991)
35 Y. Sun, H.J. Kim, M.J. Moon, Fine structure of the cardiac muscle cells in the orb-web spider Nephila clavata. Appl. Microsc. (2020). https://doi.org/10.1186/s42649-020-00030-x   DOI
36 R. Craig, J.L. Woodhead, Structure and function of myosin filaments. Curr. Opin. Struct. Biol. 16, 204-212 (2006)
37 R.S. Wilson, The heartbeat of the spider Heteropoda venatoria. J. Insect Physiol. 13, 1309-1326 (1967)
38 G.K. Isbister, M.R. Gray, Latrodectism: a prospective cohort study of bites by formally identified redback spiders. Med. J. Aust. 179, 88-91 (2003)
39 R.G. Sherman, in Neurobiology of Arachnids, ed. by F. G. Barth. Neural control of the heartbeat and skeletal muscle in spiders and scorpions (Berlin, Springer-Verlag, 1987), pp. 319-336
40 M.E. Peterson, Black widow spider envenomation. Clin. Tech. Small Anim. Pract. 21, 187-190 (2006)
41 Y.S. Lee, T.S. Hsu, Relationship between reestablishment of sarcolemmaglycocalyx ultrastructures and restoration of transmembrane potentials in cultured rat heart cells. J. Electrocardiol. 20, 303-311 (1987)
42 N.S. McNutt, Ultrastructure of the myocardial sarcolemma. Circul. Res. 37, 1-13 (1975)
43 W. Meng, M. Takeichi, Adherens junction: Molecular architecture and regulation. Cold Spring Harb. Perspect. Biol. 1, a002899 (2009)
44 M.J. Moon, E.K. Tillinghast, Immunoreactivity of glutamic acid decarboxylase (GAD) isoforms in the central nervous system of the barn spider, Araneus cavaticus. Ent. Res. 43, 47-54 (2013)
45 H.S. Moss, L.S. Binder, A retrospective review of black widow spider envenomation. Ann. Emerg. Med. 16, 188-192 (1987)
46 R. Paniagua, M. Royuela, R.M. Garcia-Anchuelo, B. Fraile, Ultrastructure of invertebrate muscle cell types. Histol. Histopathol. 11, 181-201 (1996)
47 M. Pruna, E. Ehler, The intercalated disc: A mechanosensing signalling node in cardiomyopathy. Biophys. Rev. (2020). https://doi.org/10.1007/s12551-020-00737-x   DOI
48 G. Zhao, Y. Qiu, H.M. Zhang, et al., Intercalated discs: Cellular adhesion and signaling in heart health and diseases. Heart Fail. Rev. 24, 115-132 (2019)
49 R.G. Sherman, R.A. Pax, The heartbeat of the spider Geolycosa missouriensis. Comp. Biochem. Physiol. 26, 529-536 (1968)
50 C.S. Wirkner, M. Toegel, G. Pass, in Arthropod Biology and Evolution: Molecules, Development, Morphology, ed. by A. Minelli et al.. The arthropod circulatory system (Heidelberg, Springer, 2013), pp. 343-391