• Title/Summary/Keyword: Functional matrix

Search Result 586, Processing Time 0.029 seconds

Microarray Data Analysis of Perturbed Pathways in Breast Cancer Tissues

  • Kim, Chang-Sik;Choi, Ji-Won;Yoon, Suk-Joon
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.210-222
    • /
    • 2008
  • Due to the polygenic nature of cancer, it is believed that breast cancer is caused by the perturbation of multiple genes and their complex interactions, which contribute to the wide aspects of disease phenotypes. A systems biology approach for the identification of subnetworks of interconnected genes as functional modules is required to understand the complex nature of diseases such as breast cancer. In this study, we apply a 3-step strategy for the interpretation of microarray data, focusing on identifying significantly perturbed metabolic pathways rather than analyzing a large amount of overexpressed and underexpressed individual genes. The selected pathways are considered to be dysregulated functional modules that putatively contribute to the progression of disease. The subnetwork of protein-protein interactions for these dysregulated pathways are constructed for further detailed analysis. We evaluated the method by analyzing microarray datasets of breast cancer tissues; i.e., normal and invasive breast cancer tissues. Using the strategy of microarray analysis, we selected several significantly perturbed pathways that are implicated in the regulation of progression of breast cancers, including the extracellular matrix-receptor interaction pathway and the focal adhesion pathway. Moreover, these selected pathways include several known breast cancer-related genes. It is concluded from this study that the present strategy is capable of selecting interesting perturbed pathways that putatively play a role in the progression of breast cancer and provides an improved interpretability of networks of protein-protein interactions.

Muscle-Induced Accelerations of Body Segments (근육의 힘이 신체 각 부분의 가속도에 미치는 영향)

  • Khang, Gon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1967-1974
    • /
    • 1991
  • When the functional electrical stimulation is employed to recover mobility to the plegic, it is very important to understand functions of the selected muscles. I have investigated how a muscle acts to accelerate the body segments, since the body segements are connected by joints so that contraction of a muscle not only rotates the segments to which it is attached but also causes other segments to rotate by creation a reaction force at every joint, which is called the inertial coupling. I found that a single-joint muscle always acts to accelerate the spanned joint in the same direction as the joint torque produced by the muscle. However, a double-joint muscle can act to accelerate the spanned joint in the opposite direction to the joint torque produced by the muscle depending on (1) the body position, (2) the body-segmental parameters, and (3) the type of the movement. Investigating the condition number of the inertia matrix of the body-segmental model gave us some insights into how controllable the body-segmental system is for different values of the factors mentioned above. The results suggested that the upright position is the most undesirable position to independently control the three segments(trunk, thigh and shank) and that the controllability is the most sensitive to variation of the shank length and the trunk mass, which implies that accuracy is required particularly when we estimate these two body-segmental parameters before the paralyzed muscles are innervated by using electrical stimulation.

Application of Rapid Sample Preparation Method and Monitoring for Cholesterol Content in Chicken Egg and Egg powder

  • Park, Jung-Min;Jeong, In-Seek;Kwak, Byung-Man;Ahn, Jang-Hyuk;Leem, Donggil;Jeong, Jayoung;Kim, Jin-Man
    • Food Science of Animal Resources
    • /
    • v.33 no.5
    • /
    • pp.672-677
    • /
    • 2013
  • The aim of this study was to develop sample preparation method and evaluate the exact cholesterol content in egg and egg powder purchased from Korean markets, and to determine whether significant differences exist among various egg products, since a variety of products are available in Korean markets and there are no recent databases for cholesterol. To evaluate the cholesterol content in chicken egg sold in Korean local market, a simple method using non-heated saponification to determine cholesterol for emulsified foods was applied. The results of recovery for egg and egg powder were in a range of 92.4-105.0%, with a relative standard deviation between 1.1% and 2.8% by using gas chromatography-flame ionization detector. Therefore, the total cholesterol content in whole egg was estimated between 160.8 and 226.3 mg/egg (AV(average) $186.8{\pm}3.5$), which is similar or lower than previously reported levels. The value for cholesterol in egg powder was estimated between 2.94 and 3.49 mg/g (AV $3.23{\pm}0.15$). We suggested method that can be applicable to chicken egg and egg powder matrix as providing rapid and accurate determination of cholesterol in egg and egg powder. This information will be helpful for processed food producers for deciding food labels of cholesterol content.

Comparison of Protein Profiles of Proso Millet (Panicum miliaceum) Seeds of Various Korean Cultivars

  • Roy, Swapan Kumar;Kwon, Soo-Jeong;Yu, Je-Hyeok;Sarker, Kabita;Cho, Seong-Woo;Moon, Young-Ja;Jung, Tae-Wook;Park, Cheol-Ho;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.1
    • /
    • pp.40-50
    • /
    • 2017
  • Seed storage proteins are used as carbon and nitrogen sources for the nutritional improvement of seeds. Since the composition of proteins from the Korean cultivars of proso millet is unknown, this study was conducted to obtain a reference map of millet seed proteins and identify the functional characteristics of the identified proteins. Proteins extracted from proso millet seeds of various cultivars were investigated using proteomic techniques such as 2-D electrophoresis coupled with mass fingerprinting; 1152 (differentially expressed) protein spots were detected on the 2-D gels. Among them, 26 reproducible protein spots were analyzed using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Out of the 26 proteins, 2 proteins were upregulated in all the millet cultivars, while 13 proteins were upregulated and 11 proteins were downregulated in 2 cultivars. Abundance of most of the identified protein species associated with polysaccharide and starch metabolism, transcription, and pathogenesis was significantly enhanced, while that of other protein species involved in glycolysis, stress response, and transduction was severely reduced. Taken together, the results suggest that the differential expression of the proteins from the four millet cultivars may be cultivar-specific. By conducting a proteomic investigation of millet seeds from different cultivars, we sought to better understand the functional categorization of individual proteins on the basis of their molecular functions. We believe that the identified proteins may help in investigating genetic variations in millet cultivars.

Components Clustering for Modular Product Design Using Network Flow Model (네트워크 흐름 모델을 활용한 모듈러 제품 설계를 위한 컴포넌트 군집화)

  • Son, Jiyang;Yoo, Jaewook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.263-272
    • /
    • 2016
  • Modular product design has contributed to flexible product modification and development, production lead time reduction, and increasing product diversity. Modular product design aims to develop a product architecture that is composed of detachable modules. These modules are constructed by maximizing the similarity of components based on physical and functional interaction analysis among components. Accordingly, a systematic procedure for clustering the components, which is a main activity in modular product design, is proposed in this paper. The first phase in this procedure is to build a component-to-component correlation matrix by analyzing physical and functional interaction relations among the components. In the second phase, network flow modeling is applied to find clusters of components, maximizing their correlations. In the last phase, a network flow model formulated with linear programming is solved to find the clusters and to make them modular. Finally, the proposed procedure in this research and its application are illustrated with an example of modularization for a vacuum cleaner.

THE HISTOLOGIC STUDY OF THE GRAFTED hBMP-I FOR IMMEDIATE IMPLANT FIXATION (발치 후 즉시 임플란트 식립시 이식된 hBMP-I의 조직학적 고찰)

  • Lee, Eun-Young;Kim, Kyoung-Won;Choi, Hee-Won;Um, In-Woong;Chung, Ho-Yong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.316-322
    • /
    • 2004
  • A low molecular weight component named bone morphogenetic protein(BMP) chemically isolated from the organic matrix of bone, induce postfetal connective tissue cells surrounding small blood vessels to differentiate into cartilage and bone. The end product of BMP is a spherical ossicle of lamella bone filled with red bone marrow for the functional loading. This is a important point that the graft material is embedded the defect site during the implant surgery. Because present knowledge of the relationship between BMP and bone regeneration arises mainly from studies of induced bone formation in heterotopic sites, it would be helpful to determine whether BMP plays any part in the process of bone healing. The BMPs have been shown to play crucial roles in normal skeletal development as well as bone healing and are able to activate transcription of genes involved in cellular migration, proliferation, and differentiation. The delivery of BMP on matrices has been efficacious in the treatment of defect bone in implant surgery. The purpose of the histologic study was to evaluate the effect of DLB(demineralized lyophilized bone) coated with purified human BMP(hBMP-I) in immediate implant surgery with bony defect to obtain the functional structure of implant asap. The ability of a graft of hBMP-I to accelerate bony defect repair provides a rationale for its use in immediate implant surgery that have large bone defect in edentulous area.

A Study on the Statistical Method for the Target Component of a Glucose-lowering Functional Material in Extracts of Evening Primerose Seeds (혈당상승억제 기능성 소재인 달맞이꽃종자 추출물의 지표물질 분석법의 통계적 검증에 대한 연구)

  • Park, Sang-Wook;Bang, Joon Seok;Lee, Wonjae
    • Korean Journal of Clinical Pharmacy
    • /
    • v.26 no.1
    • /
    • pp.70-76
    • /
    • 2016
  • Background: The use of the extracts from evening primrose seeds as a health functional food has been gradually increased. Therefore, the monitoring and screening process has been considerably required for its quality control. Objective: This study aimed to estimate the measurement uncertainty associated with determination of penta-o-galloyl ${\beta}$-D-glucose (PGG) in extracts from evening primrose seeds by high-performance liquid chromatography. Methods: The sources of measurement uncertainty was expressed in accordance with mathematical/statistical theories of GUM & EURACHEM Guide. The expanded uncertainty was calculated by using the relative standard uncertainty between analytical result and sources of uncertainty in measurement (sample weight, final volume, extraction volume, standard solution, matrix and instrument etc). Results: In the results of 95% confidence interval, the uncertainty in measurement was $10,253.34{\pm}1,844.50{\mu}g/kg$ (k = 2.0). Conclusion: In this study, it showed that the value of uncertainty in measurement for determination of PGG in extracts from evening primrose seeds by HPLC has about 18.0% influence on PGG contents of the analytical results. The results would be very useful for the monitoring and screening of evening primrose seeds marketed in Korea for its quality control as dietary supplement.

Development and a Psychometric Evaluation of Cardiovascular Disease-Specific Quality of Life Scale for Koreans (한국 심혈관질환 특이형 삶의 질 측정도구 개발 및 평가)

  • Lee, Eun-Hyun;Tahk, Seong-Jai;Shin, Jun-Han;Lee, Young-Whee;Song, Rha-Yun
    • Journal of Korean Academy of Nursing
    • /
    • v.37 no.3
    • /
    • pp.313-323
    • /
    • 2007
  • Purpose: Health-related quality of life (HRQOL) in patients with cardiovascular disease in Korea has rarely been studied, mostly due to the lack of a psychometrically validated disease-specific instrument. The purpose of this study was to develop and validate a cardiovascular specific-HRQOL questionnaire (CD-QOL). Method: The CD-QOL was developed and validated as follows; item generation, pilot study, and psychometric tests. Patients were recruited from three-university hospitals. The patients were asked to complete the preliminary questionnaire comprising the content-validated items, SF-36, and CES-D. The NYHA and KASI classifications were used to classify the functional performance of the patients. The data was analyzed using correlation, factor analysis, multidimensional scaling, multitrait/multi-item matrix, ANOVA, and Cronbach's alpha. Result: Preliminarily, thirty-nine items were generated. Factor analysisextracted a five-factor solution with a total of twenty-two items. One item was deleted based upon the MDS. The remaining items were moderately correlated with the subscales of the SF-36 and associated with depression measured with the CES-D. The mean scores of patients in NYHA and KASI class I were significantly higher than those in NYHA and KASI class II or/and III, which suggested patients with better functional performance were likely to have a better HRQOL. Cronbach's alphas of the total and subscales were all greater than 0.70. Conclusion: The CD-QOL is a easily applicable instrument with excellent psychometric properties of content, criterion, factorial, convergent, and known-groups validity, and internal consistency reliability in Korean patients with cardiovascular disease.

Functional Expression of Saccharomyces cerevisiae NADH-quinone Oxidoreductase (NDI1) Gene in the AML12 Mouse Liver Hepatocytes for the Applying Embryonic Stem Cell

  • Seo, Byoung-Boo;Park, Hum-Dai
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.427-434
    • /
    • 2011
  • Mitochondria diseases have been reported to involve structural and functional defects of complex I-V. Especially, many of these diseases are known to be related to dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I). The dysfunction of mitochondria complex I is associated with neurodegenerative disorders, such as Parkinson's disease, Huntington's disease, and Leber's hereditary optic neuropathy (LHON). Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) is largest and consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. The Saccharomyces cerevisiae NDI1 gene using a recombinant adeno-associated virus vector (rAAV-NDI1) was successfully expressed in AML12 mouse liver hepatocytes and the NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced cells was not affected by rotenone which is inhibitor of complex I, but was inhibited by antimycin A. Furthermore, these results indicate that Ndi1 can be functionally expressed in the AML12 mouse liver hepatocytes. It is conceivable that the NDI1 gene is powerful tool for gene therapy of mitochondrial diseases caused by complex I deficiency. In the future, we will attempt to functionally express the NDI1 gene in mouse embryonic stem (mES) cell.

ANS Repositioning for Correction of Asymmetric Nose in Unilateral Cleft Lip and Palate (편측 구순구개열 환자에서 ANS 골절단술을 이용한 코 비대칭의 교정)

  • Jung, Young-Soo;Kim, Ki-Ho;Lee, Sang-Hwy;Yi, Choong-Kook
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.8 no.2
    • /
    • pp.87-94
    • /
    • 2005
  • Patients with unilateral cleft lip and palate (UCLP) generally demonstrate the asymmetries in the lip, nose and the naso-maxillary complex. And their skeletal asymmetries are known to be derived from the displacement of nasal septum, anterior nasal spine (ANS) and the pre-maxilla toward the non-affected side during the developmental and growth period. Due to the interruption of the important facial muscles, which are critical for the symmetric growth of premaxilla, functional matrix system fails to develop and results in the displacement of the ANS toward the non-affected side and nasal asymmetry. Therefore the rhinoplasty for CLP patients is required to have inter-skeletal and muscular rearrangement in the naso-maxillary complex in order to let them recover from esthetic and physiologic imbalances. And functional cheilorhinoplasty (FCR) has been a representative treatment of choice for this concept of treatment modality. The outcome and prognosis of primary or repair FCR have been known to be definitely affected by timing of the operation as well as adequate reconstruction of naso-labial muscles. However, sometimes FCR has an ineffective treatment results for patients after the facial growth period, and the limited rhinoplasty around the nose often fails to bring satisfying results. In order to circumvent this limitation, we performed ANS osteotomy for patients with unilateral CLP showing asymmetric nose, as an alternative way for corrective rhinoplasty. We could observe that the nose was rearranged along the facial mid-line by this osteotomy design and asymmetries were evidently improved postoperatively. Here we present this osteotomy method in CLP patients.

  • PDF