• 제목/요약/키워드: Functional group modification

검색결과 96건 처리시간 0.053초

폴리이미드 표면개질과 에폭시접착제 개질을 통한 폴리이미드/에폭시의 접착력 향상 (Improvement of Polyimide/Epoxy Adhesion Strength from the Modification of Polyimide Surface and Epoxy Adhesive)

  • 김성훈;이동우;정경호
    • 한국재료학회지
    • /
    • 제9권1호
    • /
    • pp.65-72
    • /
    • 1999
  • In order to minimize flexible printed circuit(FPC), which is used in computer, communication, medical facility, aviation space industry, it is required to improve the interfacial adhesion of polymide/epoxy or polyimide/polyimide consists of FPC. In this study, it was considered to improve the adhesion strength of polyimide/epoxy joint by introducing functional group on polyimide film and improving mechanical property of epoxy. Functional group on polyimide film was introduced by changing polyimide film surface to polyamic acid in KOH aqueous solution. The optimum conditions for surface modification were the concentration of 1M KOH and treatment time of 5min. Also, the optimum adhesion strength of polyimide/epoxy joint was obtained using rubber modified epoxy and polyamic acid as a base resin and curing agent of epoxy adhesive, respectively. The degree of surface modification of polyimide film examined with contact angle measurement of FTIR, thus modification of polyimide to polyamic acid was identified. Fracture surface of plymide/epoxy joint was analyzed by scanning electron microscopy, and modified polyamic acid reimidezed to polymide as increasing curing temperature.

  • PDF

A Study on the Characteristics and Surface Modification of the Zeocarbon for Water Treatment

  • Kim, Seo-A;Hong, Ji-Sook;Suh, Jeong-Kwon;Lee, Jung-Min
    • Carbon letters
    • /
    • 제6권3호
    • /
    • pp.166-172
    • /
    • 2005
  • The objective of this study was to investigate the possibility of application for water treatment using the zeocarbon. The zeocarbon was mixture of zeolite and activated carbon. In general, the application of commercial zeocarbon to water treatment is difficult because of weak strength in water and the high pH value of effluents after water treatment. Therefore, we have modified the surface of zeocarbon. For the surface modification, we used the acid treatment to make surface functional group. As a result of modification, was created functional group on zeocarbon surface and was formed mesopore in zeocarbon. The surface modified zeocarbon was applied to removal of nitrogen. In removal experiments of nitrogen, removal efficiency was very high. And, strength of zeocarbon after water treatment and pH of effluents were stabilized. This indicates that the surface modified zeocarbon was easy to recover and reuse. Consequently, our results were shown the possibility of application for water treatment using the surface modified zeocarbon.

  • PDF

Cyanoethyl화에 의한 제지용 섬유의 화학적 개질효과에 관한 연구 (A Study on Chemical Modification Effect of Papermaking Fiber by Cyanoethylation)

  • 윤세영;조병묵;오정수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권1호
    • /
    • pp.56-64
    • /
    • 1997
  • Since there are three hydroxyl groups on each anhydroglucose ring of the cellulose, the renewable resources, we can get various functional papers by the chemical modification of cellulose. The reaction involving the introduction of the ${\beta}$-cyanoethyl ($-CH_2-CH_2$-CN) group into organic substances containing reactive hydrogen atoms is known as cyanoethylation. Cellulose reacts with acrylonitrile in the presence of strong alkalis in a typical manner of primary and secondary alcohols to form cyanoethyl ethers. In cyanoethylation, important factors of reaction are temperature, concentration of the NaOH, and addition rate of acrylronitrile. FT-IR spectra of cyanoethyl group was confirmed at $2250cm^{-1}$, which corresponds the introduction of aliphatic nitrile group. Effect of cyanoethyl DS(degree of substitution) on strength properties was resulted that cyanoethylated BKP of DS 0.04 appeared to be the best choice for overall strength properties. Also, excellent thermal stability in aging characteristics was obtained.

  • PDF

Effect of surface modification of carbon felts on capacitive deionization for desalination

  • Lee, Jong-Ho;Ahn, Hong-Joo;Cho, Donghwan;Youn, Jeong-Il;Kim, Young-Jig;Oh, Han-Jun
    • Carbon letters
    • /
    • 제16권2호
    • /
    • pp.93-100
    • /
    • 2015
  • Surface modified carbon felts were utilized as an electrode for the removal of inorganic ions from seawater. The surfaces of the carbon felts were chemically modified by alkaline and acidic solutions, respectively. The potassium hydroxide (KOH) modified carbon felt exhibited high Brunauer-Emmett-Teller (BET) surface areas and large pore volume, and oxygen-containing functional groups were increased during KOH chemical modification. However, the BET surface area significantly decreased by nitric acid ($HNO_3$) chemical modification due to severe chemical dissolution of the pore structure. The capability of electrosorption by an electrical double-layer and the efficiency of capacitive deionization (CDI) thus showed the greatest enhancement by chemical KOH modification due to the appropriate increase of carboxyl and hydroxyl functional groups and the enlargement of the specific surface area.

Selective adsorption of Ba2+ using chemically modified alginate beads with enhanced Ba2+ affinity and its application to 131Cs production

  • Kim, Jin-Hee;Lee, Seung-Kon
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3017-3026
    • /
    • 2022
  • The 131Cs radioisotope with a short half-life time and high average radiation energy can treat the cancer effectively in prostate brachytherapy. The typical 131Cs production processes have a separation step of the cesium from 131Ba to obtain a high specific radioactivity. Herein, we suggested a novel 131Cs separation method based on the Ba2+ adsorption of alginate beads. It is necessary to reduce the affinity of alginate beads to cesium ions for a high production yield. The carboxyl group of the alginate beads was replaced by a sulfonate group to reduce the cesium affinity while reinforcing their affinity to barium ions. The modified beads exhibited superior Ba2+ adsorption performances to native beads. In the fixed-bed column tests, the saturation time and adsorption capacity could be estimated with the Yoon-Nelson model in various injection flow rates and initial concentrations. In terms of the Cs elution, the modified alginate showed better performance (i.e., an elution over 88%) than the native alginate (i.e., an elution below 10%), indicating that the functional group modification was effective in reducing the affinity to cesium ions. Therefore, the separation of cesium from the barium using the modified alginate is expected to be an additional option to produce 131Cs.

Synthesis of Various Functional Block Copolymers via Controlled Ring Opening Metathesis Polymerization and the Subsequent Chemical Modifications

  • Kang, Min-Hyuk;Moon, Bong-Jin
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.200-200
    • /
    • 2006
  • Several polynorbornene or poly(norbornene-7-oxide) based functional block copolymers were synthesized by ring opening metathesis polymerization (ROMP) with good molecular weight and polydispersity control. Some representative functional groups in these polymers are a nitrobenzoyl group or ferrocene. These polymers were subjected to various chemical modification reactions to give other block copolymers that contain novel functionality such as amine, diazonium salt, and diazo groups. The resulting polymers were characterized by various techniques such as GPC, NMR, UV-VIS, AFM, and cyclovotammography (CV).

  • PDF

산소 플라즈마로 표면처리된 탄소섬유/에폭시 적층복합재의 전단거동 (Shear Behavior of Plasma-treated Graphite/Epoxy Laminated Composites Using Oxygen Gas)

  • 김민호;이경엽;백영남;정동호;김현주
    • 한국정밀공학회지
    • /
    • 제25권9호
    • /
    • pp.103-108
    • /
    • 2008
  • In-plane shear tests were performed to investigate the shear property change of FRP by plasma modification. Graphite/epoxy prepreg was used as a test material and plasma source was a microwave (2.4GHz) type. Plasma was induced by oxygen gas and its flow rate was kept $4{\sim}5$sccm with low vacuum state of $10^{-3}$ Torr. Prepreg was stacked unidirectionally ($[0^0]_8$) after plasma modification. Wettability was determined by measuring a contact angle. The results showed that the contact angle was decreased from $86^0$ to $45^0$ after plasma modification. Shear strength was also improved by ${\sim}10%$. SEM examination was made on the fracture surface and functional group produced by the plasma modification was investigated by XPS.

대나무 활성탄의 산 개질이 납과 구리 이온의 흡착에 미치는 영향 (Effects of Acid Modification on Pb(II) and Cu(II) Adsorption of Bamboo-based Activated Carbon)

  • 이명은;정재우
    • 유기물자원화
    • /
    • 제24권1호
    • /
    • pp.3-10
    • /
    • 2016
  • 질산과 염산에 의한 대나무활성탄(bamboo-based activated carbon, BAC)의 개질이 Pb(II)와 Cu(II)의 흡착특성에 미치는 영향을 규명하기 위해 회분식 흡착실험을 수행하였다. 산 개질에 의해 BAC의 탄소함량은 감소하고 산소함량은 증가하며 pH는 감소하는 것으로 나타났다. 염산에 의한 개질은 BAC에 뚜렷한 표면작용기를 첨가시키지 않았으나 질산에 의한 개질은 카르복실기와 OH 작용기를 첨가시키는 것으로 나타났다. BAC와 산으로 개질된 BAC의 중금속 이온 흡착속도는 2차 속도모델에 의해 적절하게 설명될 수 있는 것으로 나타나 흡착반응의 속도가 물리적 흡착보다는 흡착제와 금속이온들 사이의 전자들의 공유나 교환을 포함하는 화학적 흡착에 의해 결정되는 것으로 나타났다. 실험에 사용된 모든 흡착소재의 등온흡착특성은 Langmuir와 Freundlich 모델에 의해 적절하게 설명될 수 있으며 BAC의 염산에 의한 개질은 중금속 이온의 흡착용량에 큰 영향을 미치지 않으나 표면작용기를 첨가시킨 질산에 의한 개질은 Pb(II)와 Cu(II)의 흡착용량을 각각 36.0%와 27.3% 증가시키는 것으로 나타났다.

Biosynthesis, Modification, and Biodegradation of Bacterial Medium-Chain-Length Polyhydroxyalkanoates

  • Kim, Do-Young;Kim, Hyung-Woo;Chung, Moon-Gyu;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • 제45권2호
    • /
    • pp.87-97
    • /
    • 2007
  • Medium-chain-length polyhydroxyalkanoates (MCL-PHAs), which have constituents with a typical chain length of $C_{6}-C_{14}$, are polyesters that are synthesized and accumulated in a wide variety of Gram-negative bacteria, mainly pseudomonads. These biopolyesters are promising materials for various applications because they have useful mechanical properties and are biodegradable and biocompatible. The versatile metabolic capacity of some Pseudomonas spp. enables them to synthesize MCL-PHAs that contain various functional substituents; these MCL-PHAs are of great interest because these functional groups can improve the physical properties of the polymers, allowing the creation of tailor-made products. Moreover, some functional substituents can be modified by chemical reactions to obtain more useful groups that can extend the potential applications of MCL-PHAs as environmentally friendly polymers and functional biomaterials for use in biomedical fields. Although MCL-PHAs are water-insoluble, hydrophobic polymers, they can be degraded by microorganisms that produce extracellular MCL-PHA depolymerase. MCL-PHA-degraders are relatively uncommon in natural environments and, to date, only a limited number of MCL-PHA depolymerases have been investigated at the molecular level. All known MCL-PHA depolymerases share a highly significant similarity in amino acid sequences, as well as several enzymatic characteristics. This paper reviews recent advances in our knowledge of MCL-PHAs, with particular emphasis on the findings by our research group.