Browse > Article
http://dx.doi.org/10.17137/korrae.2016.24.1.3

Effects of Acid Modification on Pb(II) and Cu(II) Adsorption of Bamboo-based Activated Carbon  

Lee, Myoung-Eun (Department of Urban System Engineering, GNTECH)
Chung, Jae-Woo (Department of Environmental Engineering, GNTECH)
Publication Information
Journal of the Korea Organic Resources Recycling Association / v.24, no.1, 2016 , pp. 3-10 More about this Journal
Abstract
Effects of acid ($HNO_3$ and HCl) modification on the adsorption properties of Pb(II) and Cu(II) onto bamboo-based activated carbon (BAC) were investigated through a series of batch experiments. The carbon content increased and oxygen content decreased with acid treatment. $HNO_3$ induced carboxylic acids and hydroxyl functional groups while HCl added no functional group onto BAC. The pseudo-second order model better described the kinetics of Pb(II) and Cu(II) adsorption onto experimented adsorbents, indicating that the rate-limiting step of the heavy metal sorption is chemical sorption involving valency forces through sharing or exchange of electrons between the adsorbate and the adsorbent. The equilibrium sorption data followed both Langmuir and Freundlich isotherm models. The adsorption capacities of BAC were affected by the surface functional groups added by acid modification. The adsorption capacities were enhanced up to 36.0% and 27.3% for Pb(II) and Cu(II), respectively by the $HNO_3$ modification, however, negligibly affected by HCl.
Keywords
Bamboo-based activated carbon(BAC); Acid modification; Heavy metals; Kinetics; Isotherm;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Lee, M., Lee, C. and Chung, J., "Adsorption characteristics of Pb(II) by manganese oxide coated activated carbon in fixed bed column study", Journal of the Korean Geo-Environmental Society, 15(8), pp. 39-44. (2014).   DOI
2 Liu, Q.-S., Zheng, T., Li, N., Wang, P. and Abulikemu G., "Modification of bamboo-based activated carbon using mirowave radiation and its effects on the adsorption of methylene blue", Applied Surface Science, 256(10), pp. 3309-3315. (2010).   DOI
3 Lee, S. J., Lee, M. and Chung, J.-W., "Comparison of heavy metal adsorption by manganese oxide-coated activated carbon according to manufacture method", Journal of Korean Society of Environmental Engineers, 36(1), pp. 7-12. (2014).   DOI
4 Ioannidou, O. and Zabaniotou, A., "Agricultural residues as precursors for activated carbon production-a review", Renewable and Sustainable Energy Reviews, 11(9), pp. 1966-2005. (2007).   DOI
5 Bak, Y.-C., Cho, K.-J. and Choi, J.-H., "Production and $CO_2$ adsorption characteristics of activated carbon from bamboo by $CO_2$ activation method", Korean Chemical Engineering Research, 43(1), pp. 146-152. (2005).
6 Mui, E. L. K., Cheung, W. H., Valix M. and McKay G., Activated carbon from bamboo scaffolding using acid activation, Separation and Purification Technology, Vol. 74, No. 2, pp. 213-218. (2010).   DOI
7 Ghaedi, M., Ansari, A., Habibi, M. H. and Asghari, A. R., "Removal of malachite green from aqeuous solution by zinc oxide nanoparticle loaded on activated carbon: Kinetics and iotherm study", Journal of Industrial and Engineering Chemistry, 20(1), pp. 17-28. (2014).   DOI
8 Lee, M.-E., Park, J. H., Chung, J. W., Lee C.-Y. and Kang S., "Removal of Pb and Cu ions from aqueous solution by $Mn_3O_4$-coated activated carbon", Journal of Industrial and Engineering Chemistry, 21, pp. 470-475. (2015).   DOI
9 Rivera-Utrillia, J., Sanchez-Polo, M., Gomez-Serrano, V., Alvarez, P. M., Alvim-Ferraz, M. C. M. and Dias, J. M., "Activated carbon modifications to enhance its water treatment applications. An overview", Journal of Hazardous Materials, 187(1-3), pp. 1-23. (2011).   DOI
10 Ho, Y. S., "Review of second-order models for adsorption systems", Journal of Hazardous Materials, B136, pp. 681-689. (2006).
11 Aksu, Z., "Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of lead(II) ions onto Chlorella vulgaris", Process Biochemistry, 38(1), pp. 89-99. (2002).   DOI
12 Liu, Z. and Zhang, F. S., "Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass", Journal of Hazardous Materials, 167(1-3), pp. 933-939. (2009).   DOI
13 Pellera, F.-M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J.-Y. and Gidarakos, E., "Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products", Journal of Environmental Management, 96(1), pp. 35-42. (2012).   DOI
14 Chen, B., Zhou, D. and Zhu, L., "Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperature", Environmental Science and Technology, 42(14), pp. 5137-5143. (2008).   DOI
15 Ho, Y. S. and McKay, G., "Pseudo-second order model for sorption processes", Process Biochemistry, 34(5), pp. 451-465. (1999).   DOI
16 Choi, I. W., Kim, S. U., Seo, D. C., Kang, B. H., Sohn, B. K., Rim, Y. S., Heo, J. S. and Cho J. S., "Biosorption of heavy metals by biomass of seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida", Korean Journal of Environmental Agriculture, 24(4), pp. 370-378. (2005).   DOI
17 Weber, J. and Miller, C. T., Organic chemical movement over and through soil, In Sawhney, B. L. and Brown, K.(ed)., Reactions and movement of organic chemical, Soil Science Society of America and American Society of Agnonomy, pp. 305-334. (1989).
18 Goel, J., Kadirvelu, K., Rajagopal, C. and Garg V. K., "Removal of lead(II) by adsorption using treated granular activated carbon: Batch and column studies", Journal of Hazardous Materials, 125(1-3), pp. 211-220. (2005).   DOI
19 Imamoglu, M. and Tekir, O., "Removal of copper(II) and lead(II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks", Desalination, 228(1-3), pp. 108-113. (2008).   DOI