• Title/Summary/Keyword: Functional characterization

Search Result 793, Processing Time 0.027 seconds

Preparation and Characterization of Polyurethane Microcapsules Containing Functional Oil (기능성 오일을 함유하는 폴리우레탄 마이크로캡슐의 제조 및 분석)

  • 김인회;서재범;김영준
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.400-409
    • /
    • 2002
  • Polyurethane microcapsules containing functional oil (citronella oil) were successfully prepared by conventional interfacial polymerization of tolulene 2,4-diisocyanate (TDI) and ethylene glycol (EG) and characterized by Fourier transform (FT-IR) spectroscopy, Ultraviolet spectroscopy, particle size analysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Tile effects of polymerization variables, such as surfactant concentration and agitation speed, on the particle size and particle size distribution were investigated. FT-IR spectroscopic data showed that citronella oil was successfully encapsulated in the microcapsule. Thermogravimetric analysis data showed that the microcapsule was thermally stable up to $220^{\circ}C$. The controlled release of the citronella oil present in the microcapsule core in a methanol medium was demonstrated by ultraviolet spectroscopy showing that the amount of released citronella oil was increased with increasing time. It was observed that the amount of released citronella oil was increased with increasing stirring speed and emulsifier concentration in the rnicrocapsule preparation step. Polyurethane microcapsules containing citronella oil showed excellent anti-moth property.

Preparation of UV curable coating solution from multi functional acrylates and characterization of optical properties of coated layer on PET film (다관능 아크릴레이트계 자외선 경화형 코팅액의 제조 및 이를 이용한 PET 필름 도막의 광학 특성 연구)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.467-472
    • /
    • 2009
  • Ultraviolet curable coating solution was prepared with poly(ethylene glycol) acrylate oligomer and various mono and multi-functional acrylate monomers. The optical properties of UV cured coating layer on PET film with acrylate coating solution containing metal oxides, such as fumed silica and alumina, were also investigated to reduce light reflection on films. Poly(ethylene glycol) diacrylate which has 575 of average molecular weight was used as oligomer acrylate, and pentaerythritol triacrylate and dipentaerythritolpenta-/hexa acrylate were used as multi-functional acrylate monomers. Also, butyl acrylate was used to improve the adhesion as well as to reduce glass transition temperature to give a better flexability. 1-hydroxy cyclohexyl phenyl ketone was used as photoinitiator. We found out the metal oxides in acrylate coating solution showed a homogeneous dispersion from energy dispersive spectroscopy data. Transmittance and light reflection of coated PET film was measured with UV/vis spectrometer and gloss meter, respectively. When 1.00 g of both metal oxides was added into coating solution, the transmittance and the glossiness were reduced from 90% to 30% and from 190 GU to 35 GU, respectively. However, adding up to 1.00 g of the metal oxide into coating solution did not affect on the hardness of coating layer and adhesion between coated layer and PET film. Conclusively, we can control transmittance and light reflection of coated film by adjusting the amounts of metal oxide in coating solution.

Functional Characterization and Proteomic Analysis of Porcine Deltacoronavirus Accessory Protein NS7

  • Choi, Subin;Lee, Changhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1817-1829
    • /
    • 2019
  • Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus that causes diarrhea in neonatal piglets. Like other coronaviruses, PDCoV encodes at least three accessory or species-specific proteins; however, the biological roles of these proteins in PDCoV replication remain undetermined. As a first step toward understanding the biology of the PDCoV accessory proteins, we established a stable porcine cell line constitutively expressing the PDCoV NS7 protein in order to investigate the functional characteristics of NS7 for viral replication. Confocal microscopy and subcellular fractionation revealed that the NS7 protein was extensively distributed in the mitochondria. Proteomic analysis was then conducted to assess the expression dynamics of the host proteins in the PDCoV NS7-expressing cells. High-resolution two-dimensional gel electrophoresis initially identified 48 protein spots which were differentially expressed in the presence of NS7. Seven of these spots, including two up-regulated and five down-regulated protein spots, showed statistically significant alterations, and were selected for subsequent protein identification. The affected cellular proteins identified in this study were classified into functional groups involved in various cellular processes such as cytoskeleton networks and cell communication, metabolism, and protein biosynthesis. A substantial down-regulation of α-actinin-4 was confirmed in NS7-expressing and PDCoV-infected cells. These proteomic data will provide insights into the understanding of specific cellular responses to the accessory protein during PDCoV infection.

Growth Characteristics and Functional Analysis of Salvia miltiorrhiza Bunge by Artificial Light Sources (인공광원별 단삼의 생육특성 및 기능성 평가)

  • Choi, Hye Lim;Seo, Ji Won;Hwang, Myeong Ha;Lee, Hwa Il;Kim, Myong Jo;Yu, Chang Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.3
    • /
    • pp.200-208
    • /
    • 2020
  • Background: Salvia miltiorrhiza Bunge has been used in traditional medicine. The type of light source has an effect on the growth properties and composition of functional compounds in plants. In this study, we analyzed the effects of different artificial light sources on the growth characteristics as well as antioxidant and antimicrobial activities of S. miltiorrhiza. Methods and Results: Seedlings of S. miltiorrhiza were grown under various artificial light sources, including fluorescent light (FL), light emitting diode (LED), and microwave electrodeless light (MEL), for 8 weeks. Growth characteristics were the best in plants treated with MEL. DPPH scavenging activity of the shoot was more pronounced with the FL treatments, while the roots were more active in plants grown under single wavelength lights (i.e., blue and red LEDs). Among the different light source treatments, the blue LED resulted in a higher total phenolic content in the plants. Furthermore, growing plants growth under the red LED enhanced their total flavonoid content. Notably, the antimicrobial properties of plants varied significantly between light source treatments in this study. Except for E. coli, all the tested microorganisms were susceptible to the plant extracts. Conclusions: The type of light source may be an important parameter for the enhancement of plant growth and functional compounds in S. miltiorrhiza.

Proteome characterization of the liquid cultured tetraploid roots in Platycodon grandiflorum

  • Ko, Jung-Hee;Kwon, Soo Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.125-125
    • /
    • 2017
  • The roots of Platycodon grandiflorum are commonly used for treating bronchitis, asthma, tuberculosis, diabetes, and other inflammatory diseases. Since the molecular mechanism underlying the roots of the plant is unclear. Therefore, the present study was conducted to profile proteins from liquid cultured tetraploid roots of Platycodon grandi orum fl using high throughput proteome approach. Two-dimensional gels stained with CBB, a total of 659 differentially expressed proteins were identified from the liquid medium cultured tetraploid roots of which 32 proteins spots (${\geq}1.5-fold$) were sorted for mass spectrometry analysis. Out of these 32 proteins, a total of 15 proteins were up-regulated such as Serine carboxypeptidase-like 27, Transcription factor bHLH150, 60 kDa jasmonate-induced protein, Cytosolic Fe-S cluster assembly factor NBP35, Regulatory associated protein of TOR 2 and a total of 17 proteins were down-regulated such as Protein G1-like2, Phenylalanine ammonia-lyase, Fructokinase-2, Trihelix transcription factor GT-3a, Guanine nucleotide-binding protein alpha-1 subunit. However, the frequency distribution of identified proteins was carried out within functional categories based on molecular functions, cellular components, and biological processes. Functional categorization revealed that the most of the identified proteins from the explants were mainly associated with the nucleic acid binding, oxidoreductase, transferase activity, protein binding and hydrolase activity. In addition, the proteomic feedback of tetraploid roots of P. grandiflorum may potentially be used to understand the characteristics of proteins and their functions.

  • PDF

Characterization and functional inferences of a genome-wide DNA methylation profile in the loin (longissimus dorsi) muscle of swine

  • Kim, Woonsu;Park, Hyesun;Seo, Kang-Seok;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.3-12
    • /
    • 2018
  • Objective: DNA methylation plays a major role in regulating the expression of genes related to traits of economic interest (e.g., weight gain) in livestock animals. This study characterized and investigated the functional inferences of genome-wide DNA methylome in the loin (longissimus dorsi) muscle (LDM) of swine. Methods: A total of 8.99 Gb methylated DNA immunoprecipitation sequence data were obtained from LDM samples of eight Duroc pigs (four pairs of littermates). The reference pig genome was annotated with 78.5% of the raw reads. A total of 33,506 putative methylated regions (PMR) were identified from methylated regions that overlapped at least two samples. Results: Of these, only 3.1% were commonly observed in all eight samples. DNA methylation patterns between two littermates were as diverse as between unrelated individuals (p = 0.47), indicating that maternal genetic effects have little influence on the variation in DNA methylation of porcine LDM. The highest density of PMR was observed on chromosome 10. A major proportion (47.7%) of PMR was present in the repeat regions, followed by introns (21.5%). The highest conservation of PMR was found in CpG islands (12.1%). These results show an important role for DNA methylation in species- and tissue-specific regulation of gene expression. PMR were also significantly related to muscular cell development, cell-cell communication, cellular integrity and transport, and nutrient metabolism. Conclusion: This study indicated the biased distribution and functional role of DNA methylation in gene expression of porcine LDM. DNA methylation was related to cell development, cell-cell communication, cellular integrity and transport, and nutrient metabolism (e.g., insulin signaling pathways). Nutritional and environmental management may have a significant impact on the variation in DNA methylation of porcine LDM.

Identification and Functional Characterization of Novel Genetic Variations in the OCTN1 Promoter

  • Park, Hyo Jin;Choi, Ji Ha
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.169-175
    • /
    • 2014
  • Human organic cation/carnitine transporter 1 (OCTN1) plays an important role in the transport of drugs and endogenous substances. It is known that a missense variant of OCTN1 is significantly associated with Crohn's disease susceptibility. This study was performed to identify genetic variants of the OCTN1 promoter in Korean individuals and to determine their functional effects. First, the promoter region of OCTN1 was directly sequenced using genomic DNA samples from 48 healthy Koreans. OCTN1 promoter activity was then measured using a luciferase reporter assay in HCT-116 cells. Seven variants of the OCTN1 promoter were identified, two of which were novel. There were also four major OCTN1 promoter haplotypes. Three haplotypes (H1, H3, and H4) showed decreased transcriptional activity, which was reduced by 22.9%, 23.0%, and 44.6%, respectively (p<0.001), compared with the reference haplotype (H2). Transcription factor binding site analyses and gel shift assays revealed that NF-Y could bind to the region containing g.-1875T>A, a variant present in H3, and that the binding affinity of NF-Y was higher for the g.-1875T allele than for the g.-1875A allele. NF-Y could also repress OCTN1 transcription. These data suggest that three OCTN1 promoter haplotypes could regulate OCTN1 transcription. To our knowledge, this is the first study to identify functional variants of the OCTN1 promoter.

Preparation and Characterization of Polyamide Thin Film Composite Reverse Osmosis Membranes Using Hydrophilic Treated Microporous Supports (친수성 처리된 다공성 지지체를 이용한 폴리아마이드 박막 역삼투 복합막 제조 및 특성 분석)

  • Son, Seung Hee;Jegal, Jonggeon
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.317-324
    • /
    • 2014
  • It is very well known that the conventional polyamide (PA) thin film composite (TFC) reverse osmosis (RO) membranes have excellent permselective properties, but their chlorine tolerance is not good enough. In this study, to improve such chlorine tolerance, microporous membranes containing hydrophilic functional groups such as -COOH were used as a support to prepare PA TFC RO membranes, employing the conventional interfacial polymerization method. Meta-phenylene diamine (MPD) and 2,6-diamine toluene (2,6-DAT) were used as diamine monomers and tri-mesoyl chloride (TMC) as an acid monomer. The membranes prepared were characterized using various instrumental analytical methods and permeation test set-up. The flux obtained from the membranes prepared so was more than $1.0m^3/m^2day$ at 800 psi of operating pressure, while the salt rejection was over 99.0%. The chlorine tolerance of them was also found to be better than that of the membrane prepared by using conventional polysulfone support without hydrophilic functional groups.

Characterization and Transcriptional Expression of the α-Expansin Gene Family in Rice

  • Shin, Jun-Hye;Jeong, Dong-Hoon;Park, Min Chul;An, Gynheung
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.210-218
    • /
    • 2005
  • The rice genome contains at least 28 EXPA (${\alpha}$-expansin) genes. We have obtained near full-length cDNAs from the previously uncharacterized genes. Analysis of these newly identified clones together with the 12 identified earlier showed that the EXPA genes contain up to two introns and encode proteins of 240 to 291 amino acid residues. The EXPA proteins contain three conserved motifs: eight cysteine residues at the N-terminus, four tryptophan residues at the C-terminus, and a histidine-phenylalanine-aspartate motif in the central region. EXPA proteins could be divided into six groups based on their sequence similarity. Most were strongly induced in two-day-old seedlings and in the roots of one-week-old plants. However, only 14 genes were expressed in the aboveground organs, and their patterns were quite diverse. Transcript levels of EXPA7, 14, 15, 18, 21, and 29 were greater in stems, while EXPA2, 4, 5, 6, and 16 were highly expressed in both stem and sheath but not in leaf blade. EXPA1 is leaf blade-preferential, and EXP9 is leaf sheath-preferential. Most of the root-expressed genes were more strongly expressed in the dividing zone. However, the Group 2 EXPA genes were also strongly expressed in both mature and dividing zones, while EXPA9 was preferentially expressed in the elongation zone. Fourteen EXPA genes were expressed in developing panicles, with some being expressed during most developmental stages, others only as the panicles matured. These diverse expression patterns of EXPA genes suggest that in general they have distinct roles in plant growth and development.

Fundamentals and Applications of Multi-functional NSOM Technology to Characterization of Nano Structured Materials (다기능 NSOM (mf-NSOM) 을 이용한 나노 구조 재료 분석에 관한 원리와 응용)

  • Lee Woo-Jin;Pyun Su-Il;Smyrl W. H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.108-123
    • /
    • 2004
  • Imaging of surfaces and structures by near-field scanning optical microscopy (NSOM) has matured and is routinely used for studies ranging from biology to materials science. Of interest in this review paper is a versatility of modified or multi-functional NSOM (mf-NSOM) to enable high resolution imaging in several modes: (1) Concurrent fluorescence and Topographical Imaging (gases) (2) Microspectroscopy (gases) (3) Concurrent Scanning Electrochemical and Topographical Imaging (SECM) (liquids) (4) Concurrent Photoelectrochemical and Topographical Imaging (PEM) (liquids) The present study will summarize some of the recent advances in mf-NSOM work confirmed and supported by the results from several other imaging techniques of optical, fluorescence, electron and electrochemical microscopy. The studies are directed at providing local information on pitting precursor sites and vulnerable areas on metal and semiconductor surfaces, and at reactive sites on heterogeneous, catalytic substrates, especially on Al 2024 alloy and polycrystalline Ti. In addition, we will introduce some results related to the laser-induced nanometal (Ag) synthesis using mf-NSOM.