• Title/Summary/Keyword: Functional acrylate

Search Result 66, Processing Time 0.027 seconds

Optimization of Peel Adhesion of Acrylic Pressure Sensitive Adhesive using Design of Experiments (실험계획법을 이용한 아크릴 점착제의 점착력 최적화)

  • Lee, Young Sang;Ha, Jin Kuk;Lee, Euy Soo
    • Journal of Adhesion and Interface
    • /
    • v.9 no.1
    • /
    • pp.22-27
    • /
    • 2008
  • The effect of functional monomers on the acrylic pressure sensitive adhesive (PSA) property was measured. Design of experiments in order to optimal peel adhesion was applied and commercial program (MINITAB) was used. Analysis was used to mixture design (special cubic model) in response surface methodology. Optimal monomer compositions was construed by 2-EHA (0.8861), EA (0.0639), MAA (0.03) and AAm (0.02). The estimated regression equation was as follows : $$y=54.8816x_1+80.7067x_2-44.4700x_3-99.0288x_1x_2+60.7706x_1x_3-441.030x_2x_3+974.341x_1x_2x_3$$.

  • PDF

Fabrication of Fluorescent Labeled Bi-compartmental Particles via the Micromolding Method (미세 성형 방법을 이용한 형광 표지된 이중 분획 입자의 제조)

  • Shim, Gyurak;Jeong, Seong-Geun;Hong, Woogyeong;Kang, Koung-Ku;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.826-831
    • /
    • 2018
  • This study presents fabrication of bi-compartmental particles labeled by multiple fluorescence. To compartmentalize fluorescent expression at the particle, two fluorescent dyes with less overlap of the excitation and emission spectra are selected. To ensure the fluorescence stability, the fluorescent dyes contain acrylate functional groups in the molecules so that they can be cross-linked together with monomers constituting the particle. Strong fluorescent expression and compartmentalization were observed at the particle fabricated using the selected fluorescent dyes through confocal microscopy. Furthermore, long-term fluorescence stability was verified by measuring fluorescent expression and intensity for 4 weeks. We anticipate that the bi-compartmental particles labeled by multiple fluorescence can be widely used for multi-target drug delivery system, analysis of 3 dimensional Brownian motion, and investigation of 3 dimensional complex self-assembled morphologies.

Macroalkoxyamines and macroRAFT agents based on polyethylene for the syntheses of polyolefin based polar block copolymers

  • Lopez R. Godoy;Boisson C.;D'Agosto F.;Spitz R.;Boisson F.;Gigmes D.;Bertin D.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.377-377
    • /
    • 2006
  • Alkoxyamine and thiocarbonyl thio end capped polyethylene (PE) chains were synthesized using a direct and simple approach consisting in reacting di(polyethylenyl)magnesium (PE-Mg-PE) chains with a range of nitroxides and disulfides of thiocarbonyl thio compounds. PE-Mg-PE compounds were prepared by a catalyzed chain growth reaction of ethylene on nbutyloctylmagnesium (BOMg) with a neodymocene complex $(C_{5}Me_{5})_{2}NdCl_{2}Li(OEt_{2})_{2}$. Complete characterizations confirm the introduction of the desired end groups. The controlled radical polymerization (NMP and RAFT) of butyl acrylate mediated by these functional polyethylenes was successful.

  • PDF

Controlled synthesis of reactive polymeric architectures for stimuli-responsive materials

  • Theato, Patrick;Nilles, Katja;Metz, Nadine
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.329-329
    • /
    • 2006
  • Various new active ester monomers based on (meth)acrylates and 4-vinylbenzoic acid have been prepared. Investigation of the controlled radical polymerization behavior of the respective monomers resulted in excellent polymerization control, thus, opening synthetic routes to reactive block copolymers. Polymer analogous reactions with amines yielded functional polymers. In the case of the copolymer poly(N-isopropylacrylamide-co-acetone oxime acrylate) a lower critical solution temperature could be measured at $52^{\circ}C$. Thus, the reactive copolymer features two characters: reactive AND stimuliresponsive behavior.

  • PDF

Development and Applications of New Thermochromism Inks used Chiral Nematic Liquid Crystal-UV Curing Resin (키랄네마틱 液晶-UV경화형 수지를 이용한 새로운 온도변색성 잉크의 개발 및 응용)

  • 김준곤;남수용;구철회;윤종태;심성보
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.2
    • /
    • pp.113-124
    • /
    • 2000
  • It is well known that the characteristics of liquid crystal polymer composite(LCPC) films are possessed of large-area and flexible display, polarizer free, high contrast, wide angle of visual filed and high responsiveness. In this study, we have investigated to the best optimal mixing rates chiral nematic liquid crystals and UV-curable resins having different properties acrylate moleculars. The purpose of this study has been the development of new functional application with liquid crystal polymer composite films. For example the films were applied a new thermal sensor. In results, best phase separation behaviors turned out liquid crystal/monomer/oilgomer mixture system.

  • PDF

Capillary-driven Rigiflex Lithography for Fabricating High Aspect-Ratio Polymer Nanostructures (모세관 리소그라피를 이용한 고종횡비 나노구조 형성법)

  • Jeong, Hoon-Eui;Lee, Sung-Hoon;Kim, Pil-Nam;Suh, Kahp-Y.
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.1
    • /
    • pp.3-8
    • /
    • 2007
  • We present simple methods for fabricating high aspect-ratio polymer nanostructures on a solid substrate by rigiflex lithography with tailored capillarity and adhesive force. In the first method, a thin, thermoplastic polymer film was prepared by spin coating on a substrate and the temperature was raised above the polymer's glass transition temperature ($T_g$) while in conformal contact with a poly(urethane acrylate) (PUA) mold having nano-cavities. Consequently, capillarity forces the polymer film to rise into the void space of the mold, resulting in nanostructures with an aspect ratio of ${\sim}4$. In the second method, very high aspect-ratio (>20) nanohairs were fabricated by elongating the pre-formed nanostructures upon removal of the mold with the aid of tailored capillarity and adhesive force at the mold/polymer interface. Finally, these two methods were further used to fabricate micro/nano hierarchical structures by sequential application of the molding process for mimicking nature's functional surfaces such as a lotus leaf and gecko foot hairs.

ESTIMATION FOR DEWATERABILITY ON INTERACTION BETWEEN CATIONIC FLOCCULANTS AND IONIC MATERIALS IN DISSOLVING WATER

  • Bae, Young-Han;Lee, Sung-Sik
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.266-276
    • /
    • 2006
  • Commonly, the flocculant is dissolved in process or recycle water in industrial plant which has many ionic materials. Therefore, the polymer degradation in aqueous solution by chemical, mechanical or bacteriological may occur, sometimes rapidly. Even if the same flocculant is dissolved, the flocculation characteristics and the properties of dissolving polymer varied with the kind of dissolving water. In this study, we try to estimate the interaction between flocculants and ionic materials in dissolving water using self inversing emulsion polymer; polyacrylamide-co-trimethyl ammonium ethyl acrylate chloride flocculants which have varying molecular weights and structures at a several conditions. The polymeric flocculant is dissolved in artificial dissolving water with Potassium Chloride (PC), Calcium Chloride anhydrous (CC), Potassium Hydroxide (PH), Sodium Chloride (SC), Sodium Bromate (SB) and Iron (II) Sulfate Heptahydrate (IS) as ionic sources. Experimental results indicate that the cationic and anionic ions in dissolving water induce the hydrolysis, degradation of cationic functional group and uncoiling of polymeric flocculants, therefore, the flocculation efficiency decreased by undesired polymer. According that result, it is important to estimate not only its structures and physical properties but also the qualities of dissolving water to optimize the efficiency.

Synthesis of Acrylic Resins for High-Solid Coatings Containing Acetoacetoxy Group (Acetoacetoxy기 함유 하이솔리드 도료용 아크릴 수지의 합성)

  • You, Hyuk-Jae;Chung, Dong-Jin;Jung, Choong-Ho;Hahm, Hyun-Sik;Park, Hong-Soo;Kim, Tae-Ok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.221-229
    • /
    • 2003
  • A copolymer ${\sim}$550cps ; $M_n$, 2590${\sim}$2850 ; and conversion, 82${\sim}$89%, respectively. It was found from the plotting of $T_g$ versus viscosity and $T_g$ versus molecular weight that viscosity increased with $T_g$ while number averaged molecular weight decreased with increasing $T_g$.

An Application of Acrylic/Polyisocyanate Network Polymers to The High Solid Coatings (아크릴/폴리이소시아네이트 망상구조 폴리머의 하이솔리드 도료에의 적용)

  • Choi, Yong-Ho;Hwang, Kyu-Hyun;Kim, Dae-Won;Park, Hong-Soo;Kim, Tae-Ok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • Quater polymer(MBHA) containing two types of acrylic functional group, acetoacetoxyethyl methacrylate(AAM) and 2-hydroxyethyl acrylate was prepared. Then, the MBHA was blended with polyisocyanate type Desmodur IL as a curing agent. Thereafter the mixture was cured at room temperature to get high solid acrylic/polyisocyanate. The MBHA was synthesized at $150^{\circ}C$ for 6 hours typically, and the final conversion reached 87-88%. Lowering Tg and increasing AAM amount in the MBHA resulted in high value of conversion. There was no difference in conversion with the variations of OH values. From the results of physical property tests, MIHS coating was proved to be a good automotive top-coating material.

Synthesis and Adhesion Characteristics of Water-Borne Acrylic Pressure Sensitive Adhesives(PSAs) (수계형 아크릴 점착제의 합성 및 점착 특성)

  • Hahm, Hyun-Sik;Kwak, Yun-Chul;Hwang, Jae-Young;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.191-199
    • /
    • 2005
  • Removable protective adhesives for automobiles were synthesized by an emulsion polymerization of monomers such as n-butyl acrylate (BA), n-butyl methacrylate (BMA), acrylonitrile (AN), acrylic acid (AA) and 2-hydroxyethyl methacrylate (2-HEMA), in which AA and 2-HEMA were functional monomers. Potassium persulfate (KPS) was used as an initiator and sodium lauryl sulfate (SLS) was used as an emulsifier, and polyvinyl alcohol (PVA) was used as a stabilizer. Emulsion polymerization was carried out in a semi-batch type reactor. Tensile strength, extension, peel strength, viscosity and solid content of the synthesized adhesives were tested. The optimum physical properties of the removable protective adhesives for automobiles were obtained with the composition of 0.43 mole BA, 0.57 mole AN, 0.21 mole BMA, 0.03 mole AA, and 0.03 mole 2-HEMA.