• Title/Summary/Keyword: Functional Magnetic Resonance Imaging

Search Result 343, Processing Time 0.029 seconds

Evaluation and Prediction of Post-Hepatectomy Liver Failure Using Imaging Techniques: Value of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging

  • Keitaro Sofue;Ryuji Shimada;Eisuke Ueshima;Shohei Komatsu;Takeru Yamaguchi;Shinji Yabe;Yoshiko Ueno;Masatoshi Hori;Takamichi Murakami
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.24-32
    • /
    • 2024
  • Despite improvements in operative techniques and perioperative care, post-hepatectomy liver failure (PHLF) remains the most serious cause of morbidity and mortality after surgery, and several risk factors have been identified to predict PHLF. Although volumetric assessment using imaging contributes to surgical simulation by estimating the function of future liver remnants in predicting PHLF, liver function is assumed to be homogeneous throughout the liver. The combination of volumetric and functional analyses may be more useful for an accurate evaluation of liver function and prediction of PHLF than only volumetric analysis. Gadoxetic acid is a hepatocyte-specific magnetic resonance (MR) contrast agent that is taken up by hepatocytes via the OATP1 transporter after intravenous administration. Gadoxetic acid-enhanced MR imaging (MRI) offers information regarding both global and regional functions, leading to a more precise evaluation even in cases with heterogeneous liver function. Various indices, including signal intensity-based methods and MR relaxometry, have been proposed for the estimation of liver function and prediction of PHLF using gadoxetic acid-enhanced MRI. Recent developments in MR techniques, including high-resolution hepatobiliary phase images using deep learning image reconstruction and whole-liver T1 map acquisition, have enabled a more detailed and accurate estimation of liver function in gadoxetic acid-enhanced MRI.

Analysis of Quantization Noise in Magnetic Resonance Imaging Systems (자기공명영상 시스템의 양자화잡음 분석)

  • Ahn C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.42-49
    • /
    • 2004
  • Purpose : The quantization noise in magnetic resonance imaging (MRI) systems is analyzed. The signal-to-quantization noise ratio (SQNR) in the reconstructed image is derived from the level of quantization in the signal in spatial frequency domain. Based on the derived formula, the SQNRs in various main magnetic fields with different receiver systems are evaluated. From the evaluation, the quantization noise could be a major noise source determining overall system signal-to-noise ratio (SNR) in high field MRI system. A few methods to reduce the quantization noise are suggested. Materials and methods : In Fourier imaging methods, spin density distribution is encoded by phase and frequency encoding gradients in such a way that it becomes a distribution in the spatial frequency domain. Thus the quantization noise in the spatial frequency domain is expressed in terms of the SQNR in the reconstructed image. The validity of the derived formula is confirmed by experiments and computer simulation. Results : Using the derived formula, the SQNRs in various main magnetic fields with various receiver systems are evaluated. Since the quantization noise is proportional to the signal amplitude, yet it cannot be reduced by simple signal averaging, it could be a serious problem in high field imaging. In many receiver systems employing analog-to-digital converters (ADC) of 16 bits/sample, the quantization noise could be a major noise source limiting overall system SNR, especially in a high field imaging. Conclusion : The field strength of MRI system keeps going higher for functional imaging and spectroscopy. In high field MRI system, signal amplitude becomes larger with more susceptibility effect and wider spectral separation. Since the quantization noise is proportional to the signal amplitude, if the conversion bits of the ADCs in the receiver system are not large enough, the increase of signal amplitude may not be fully utilized for the SNR enhancement due to the increase of the quantization noise. Evaluation of the SQNR for various systems using the formula shows that the quantization noise could be a major noise source limiting overall system SNR, especially in three dimensional imaging in a high field imaging. Oversampling and off-center sampling would be an alternative solution to reduce the quantization noise without replacement of the receiver system.

  • PDF

Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging for Language Mapping in Brain Tumor Surgery: Validation With Direct Cortical Stimulation and Cortico-Cortical Evoked Potential

  • Koung Mi Kang;Kyung Min Kim;In Seong Kim;Joo Hyun Kim;Ho Kang;So Young Ji;Yun-Sik Dho;Hyongmin Oh;Hee-Pyoung Park;Han Gil Seo;Sung-Min Kim;Seung Hong Choi;Chul-Kee Park
    • Korean Journal of Radiology
    • /
    • v.24 no.6
    • /
    • pp.553-563
    • /
    • 2023
  • Objective: Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging-derived tractography (DTI-t) contribute to the localization of language areas, but their accuracy remains controversial. This study aimed to investigate the diagnostic performance of preoperative fMRI and DTI-t obtained with a simultaneous multi-slice technique using intraoperative direct cortical stimulation (DCS) or corticocortical evoked potential (CCEP) as reference standards. Materials and Methods: This prospective study included 26 patients (23-74 years; male:female, 13:13) with tumors in the vicinity of Broca's area who underwent preoperative fMRI and DTI-t. A site-by-site comparison between preoperative (fMRI and DTI-t) and intraoperative language mapping (DCS or CCEP) was performed for 226 cortical sites to calculate the sensitivity and specificity of fMRI and DTI-t for mapping Broca's areas. For sites with positive signals on fMRI or DTI-t, the true-positive rate (TPR) was calculated based on the concordance and discordance between fMRI and DTI-t. Results: Among 226 cortical sites, DCS was performed in 100 sites and CCEP was performed in 166 sites. The specificities of fMRI and DTI-t ranged from 72.4% (63/87) to 96.8% (122/126), respectively. The sensitivities of fMRI (except for verb generation) and DTI-t were 69.2% (9/13) to 92.3% (12/13) with DCS as the reference standard, and 40.0% (16/40) or lower with CCEP as the reference standard. For sites with preoperative fMRI or DTI-t positivity (n = 82), the TPR was high when fMRI and DTI-t were concordant (81.2% and 100% using DCS and CCEP, respectively, as the reference standards) and low when fMRI and DTI-t were discordant (≤ 24.2%). Conclusion: fMRI and DTI-t are sensitive and specific for mapping Broca's area compared with DCS and specific but insensitive compared with CCEP. A site with a positive signal on both fMRI and DTI-t represents a high probability of being an essential language area.

A System for Concurrent TMS-fMRI and Evaluation of Imaging Effects (동시 뇌경두개자기자극-기능자기공명영상 시행을 위한 홀더 제작과 시뮬레이션 및 영상 데이터 평가)

  • Kim, Jae-Chang;Kyeong, Sunghyon;Lee, Jong Doo;Park, Hae-Jeong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.3
    • /
    • pp.169-180
    • /
    • 2013
  • Purpose : The purpose of this study was to setup a concuurent transcranial magnetic stimulation (TMS)-functional MRI (fMRI) system for understanding causality of the functional brain network. Materials and Methods: We manufactured a TMS coil holder using nonmagnetic polyether ether ketone (PEEK). We simulated magnetic field distributions in the MR scanner according to TMS coil positions and angles. To minimize image distortions caused by TMS application, we controlled fMRI acquisition and TMS sequences to trigger TMS during inter-volume intervals. Results: Simulation showed that the magnetic field below the center of the coil was dramatically decreased with distance. Through the MR phantom study, we confirmed that TMS application around inter-volume acquisition time = 100 miliseconds reduced imaging distortion. Finally, the applicability of the concurrent TMS-fMRI was tested in preliminary studies with a healthy subject conducting a motor task within TMS-fMRI and passive motor movement induced by TMS in fMRI. Conclusion: In this study, we confirmed that the developed system allows use of TMS inside an fMRI system, which would contribute to the research of brain activation changes and causality in brain connectivity.

Characteristics of Magnetic Resonance Arthrography Findings in Traumatic Posterosuperior Rotator Cuff Tears

  • Cho, Yung-Min;Kim, Sung-Jae;Oh, Jin-Cheol;Chun, Yong-Min
    • Clinics in Shoulder and Elbow
    • /
    • v.18 no.4
    • /
    • pp.211-216
    • /
    • 2015
  • Background: Few studies have investigated magnetic resonance (MR) characteristics of traumatic posterosuperior rotator cuff tears involving the supraspinatus and infraspinatus. We hypothesized that traumatic rotator cuff tears may have MR characteristics distinguishable from those of non-traumatic tears. Methods: Preoperative MR arthrography and intraoperative tear size measurements were compared in 302 patients who underwent MR arthrography and subsequent arthroscopic rotator cuff repairs for traumatic (group T, 61 patients) or non-traumatic (group NT, 241 patients) tears. The inclusion criteria for both groups were posterosuperior full-thickness rotator cuff tear and age between 40 and 60 years. For group T, traumas were limited to accidental falls or slips, or sports injuries, motor vehicle accidents; injuries were associated with acute onset of pain followed by functional shoulder impairment; and time between injury and magnetic resonance imaging (MRI) was 6 weeks or less. Results: In group T, 72.1% of shoulders (44 patients) had tendon tears with blunt edges while 27.9% of shoulders (17 patients) had tears with tapering edges. In contrast, 21.2% of patients in group NT (51 patients) had blunt-edge tears, while 78.8% (190 patients) of tears had tapering edges. These results were statistically significant (p<0.001) and estimated odds ratio was 9.6. The size of tear did not vary significantly between groups. Conclusions: We found no exclusive MR characteristic to define traumatic tears. However, oblique coronal MRI of traumatic tears showed a significant tendency for abrupt and rough torn tendon edges and relatively consistent tendon thicknesses (without lateral tapering) compared to non-traumatic cuff tears.

The review of neural basis for prosocial moral motivation and moral decision-making (친사회적-도덕적 동기 및 도덕적 의사결정의 신경학적 기제에 대한 개관 연구)

  • Jung, Ju-Youn;Han, Sang-Hoon
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.555-570
    • /
    • 2011
  • In order to do morally right behavior that we cognitively know, prosocial moral motivation is necessary. Previous studies revealed emotion is important for prosocial moral motivation. This was supported by cognitive neuroscience studies using functional magnetic resonance imaging(fMRI) in which the activity of ventral striatum(VS) was observed when people made moral decision. VS was originally known as the core area of reward process but recently VS was found to respond also to social reward and even feeling of prosocial emotion itself. However it is not clear why VS was activated when people experience prosocial moral sentiments. The aims of this review article were to find situations in which people are prosocially and morally motivated and to understand more about the role of emotion as a moral motivator by examining evidence regarding the neural network, including VS, of prosocial moral motivation and moral decision-making.

  • PDF

Voxel-wise Mapping of Functional Magnetic Resonance Imaging in Impression Formation

  • Jeesung Ahn;Yoonjin Nah;Inwhan Ko;Sanghoon Han
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.77-94
    • /
    • 2022
  • Social interactions often involve encountering inconsistent information about social others. We conducted a functional magnetic resonance imaging (fMRI) study to comprehensively investigate voxel-wise temporal dynamics showing how impressions are anchored and/or adjusted in response to inconsistent social information. The participants performed a social impression task inside an fMRI scanner in which they were shown a male face, together with a series of four adjectives that described the depicted person's personality traits, successively presented beneath the image of the face. Participants were asked to rate their impressions of the person at the end of each trial on a scale of 1 to 8 (where 1 is most negative and 8 is most positive). We established two hypothetical models that represented two temporal patterns of voxel activity: Model 1 featured decreasing patterns of activity towards the end of each trial, anchoring impressions to initially presented information, and Model 2 showed increasing patterns of activity toward the end of each trial, where impressions were being adjusted using new and inconsistent information. Our data-driven model fitting analyses showed that the temporal activity patterns of voxels within the ventral anterior cingulate cortex, medial orbitofrontal cortex, posterior cingulate cortex, amygdala, and fusiform gyrus fit Model 1 (i.e., they were more involved in anchoring first impressions) better than they did Model 2 (i.e., showing impression adjustment). Conversely, voxel-wise neural activity within dorsal ACC and lateral OFC fit Model 2 better than it did Model 1, as it was more likely to be involved in processing new, inconsistent information and adjusting impressions in response. Our novel approach to model fitting analysis replicated previous impression-related neuroscientific findings, furthering the understanding of neural and temporal dynamics of impression processing, particularly with reference to functionally segmenting each region of interest based on relative involvement in impression anchoring as opposed to adjustment.

New Trend of Pain Evaluation by Brain Imaging Devices (뇌기능 영상장치를 이용한 통증의 평가)

  • Lee Sung-Jin;Bai Sun-Joon
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.365-374
    • /
    • 2005
  • Pain has at least two dimensions such as somatosensory qualities and affect and patients are frequently asked to score the intensity of their pain on a numerical pain rating scale. However, the use of a undimensional scale is questionable in view of the belief, overwhelmingly supported by clinical experience as well as by empirical evidence from multidimensional scaling and other sources, that pain has multidimensions such as sensory-discrimitive, motivational-affective and cognitive-evaluative The study of pain has recently received much attention, especially in understanding its neurophysiology by using new brain imaging techniques, such as positron emission tomography(PET) and functional magnetic resonance imaging (fMRI), both of which allow us to visualize brain function in vivo. Also the new brainimaging devices allow us to evaluate the patients pain status and plan To treat patients objectively. Base4 on our findings we presented what are the new brain imaging devices and the results of study by using brain imaging devices.

  • PDF

A Functional MR Imaging Study of Reading (읽기의 기능적 자기공명영상에 관한 연구)

  • 유재욱;나동규;변홍식;최대섭;문찬홍;이은정;정우인
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.78-83
    • /
    • 1999
  • Purpose : To evaluate the language areas activated by fMRI during different reading tasks and to assess the difference of activated areas according to each reading task. Materials and Methods : Functional maps of the language area were obtained during three reading tasks(Korean consonant letter, pseudoword, and word) in nine right-handed volunteers(7 males 2 females). MR examinations were performed at 1.5T scanner with EPI BOLD technique(gradient echo shot EPI, TR/TE 3000/60, flip angle $90^{\circ}$, matrix $64{\times}64$, 5mm thickness, no slice gap). Each task consisted of three resting periods and two activation periods and each period lasted 30 seconds. We used SPM program for the postprocessing of images and signification level was set at p<0.01. Activated areas were topographically analyzed in each stimulus. Results : Significant activated signals were demonstrated in all volunteers. Activated signals were seen in the frontal, temporal, parietal and occipital lobes during reading tasks and they were lateralized to the left hemisphere except occipital lobe. Letter and pseudoword produced stronger activated signals than word, and the activated signals were more lateralized to the left hemisphere in pseudoword reading than in letter reading. Conclusion : Activated signals were induced in the language areas by reading task of letter or wordform. Greater activation of language areas was induced when letter or pseudowords were presented than familiar words.

  • PDF

A review of chronic pectoralis major tears: what options are available?

  • Joshua R. Giordano;Brandon Klein;Benjamin Hershfeld;Joshua Gruber;Robert Trasolini;Randy M. Cohn
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.3
    • /
    • pp.330-339
    • /
    • 2023
  • Rupture of the pectoralis major muscle typically occurs in the young, active male. Acute management of these injuries is recommended; however, what if the patient presents with a chronic tear of the pectoralis major? Physical exams and magnetic resonance imaging can help identify the injury and guide the physician with a plan for management. Nonoperative management is feasible, but is recommended for elderly, low-demand patients whose functional goals are minimal. Repair of chronic tears should be reserved for younger, healthier patients with high functional demands. Although operative management provides better functional outcomes, operative treatment of chronic pectoralis tears can be challenging. Tendon retraction, poor tendinous substance and quality of tissue, muscle atrophy, scar formation, and altered anatomy make direct repairs complicated, often necessitating auto- or allograft use. We review the various graft options and fixation methods that can be used when treating patients with chronic pectoralis major tears.