• Title/Summary/Keyword: Function space integral

Search Result 177, Processing Time 0.023 seconds

APPROXIMATION ORDER TO A FUNCTION IN Lp SPACE BY GENERALIZED TRANSLATION NETWORKS

  • HAHM, NAHMWOO;HONG, BUM IL
    • Honam Mathematical Journal
    • /
    • v.28 no.1
    • /
    • pp.125-133
    • /
    • 2006
  • We investigate the approximation order to a function in $L_p$[-1, 1] for $0{\leq}p<{\infty}$ by generalized translation networks. In most papers related to neural network approximation, sigmoidal functions are adapted as an activation function. In our research, we choose an infinitely many times continuously differentiable function as an activation function. Using the integral modulus of continuity and the divided difference formula, we get the approximation order to a function in $L_p$[-1, 1].

  • PDF

MULTIPLE Lp ANALYTIC GENERALIZED FOURIER-FEYNMAN TRANSFORM ON THE BANACH ALGEBRA

  • Chang, Seung-Jun;Choi, Jae-Gil
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.93-111
    • /
    • 2004
  • In this paper, we use a generalized Brownian motion process to define a generalized Feynman integral and a generalized Fourier-Feynman transform. We also define the concepts of the multiple Lp analytic generalized Fourier-Feynman transform and the generalized convolution product of functional on function space $C_{a,\;b}[0,\;T]$. We then verify the existence of the multiple $L_{p}$ analytic generalized Fourier-Feynman transform for functional on function space that belong to a Banach algebra $S({L_{a,\;b}}^{2}[0, T])$. Finally we establish some relationships between the multiple $L_{p}$ analytic generalized Fourier-Feynman transform and the generalized convolution product for functionals in $S({L_{a,\;b}}^{2}[0, T])$.

GENERALIZED FOURIER-FEYNMAN TRANSFORM AND SEQUENTIAL TRANSFORMS ON FUNCTION SPACE

  • Choi, Jae-Gil;Chang, Seung-Jun
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1065-1082
    • /
    • 2012
  • In this paper we first investigate the existence of the generalized Fourier-Feynman transform of the functional F given by $$F(x)={\hat{\nu}}((e_1,x)^{\sim},{\ldots},(e_n,x)^{\sim})$$, where $(e,x)^{\sim}$ denotes the Paley-Wiener-Zygmund stochastic integral with $x$ in a very general function space $C_{a,b}[0,T]$ and $\hat{\nu}$ is the Fourier transform of complex measure ${\nu}$ on $B({\mathbb{R}}^n)$ with finite total variation. We then define two sequential transforms. Finally, we establish that the one is to identify the generalized Fourier-Feynman transform and the another transform acts like an inverse generalized Fourier-Feynman transform.

Note on the generalized Fourier-Feynman transform on function space (함수공간에서의 일반화된 푸리에-파인만 변환에 관한 고찰)

  • Chang, Seung-Jun
    • Journal for History of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.73-90
    • /
    • 2007
  • In this paper, we define a generalized Feynman integral and a generalized Fourier-Feynman transform on function space induced by generalized Brownian motion process. We then give existence theorems and several properties for these concepts. Finally we investigate relationships of the Fourier transform and the generalized Fourier-Feynman transform.

  • PDF

𝜓-COUPLED FIXED POINT THEOREM VIA SIMULATION FUNCTIONS IN COMPLETE PARTIALLY ORDERED METRIC SPACE AND ITS APPLICATIONS

  • Das, Anupam;Hazarika, Bipan;Nashine, Hemant Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.273-288
    • /
    • 2021
  • We proposed to give some new 𝜓-coupled fixed point theorems using simulation function coupled with other control functions in a complete partially ordered metric space which includes many related results. Further we prove the existence of solution of a fractional integral equation by using this fixed point theorem and explain it with the help of an example.

A Wong-Zakai Type Approximation for the Multiple Ito-Wiener Integral

  • Lee, Kyu-Seok;Kim, Yoon-Tae;Jeon, Jong-Woo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.55-60
    • /
    • 2002
  • We present an extension of the Wong-Zakai type approximation theorem for a multiple stochastic integral. Using a piecewise linear approximation $W^{(n)}$ of a Wiener process W, we prove that the multiple integral processes {${\int}_{0}^{t}{\cdots}{\int}_{0}^{t}f(t_{1},{\cdots},t_{m})W^{(n)}(t_{1}){\cdots}W^{(n)}(t_{m}),t{\in}[0,T]$} where f is a given symmetric function in the space $C([0,T]^{m})$, converge to the multiple Stratonovich integral of f in the uniform $L^{2}$-sense.

  • PDF

CONDITIONAL FORUIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT FOR A VECTOR VALUED CONDITIONING FUNCTION

  • Kim, Bong Jin
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.239-247
    • /
    • 2022
  • Let C0[0, T] denote the Wiener space, the space of continuous functions x(t) on [0, T] such that x(0) = 0. Define a random vector $Z_{\vec{e},k}:C_0[0,\;T] {\rightarrow}{\mathbb{R}}^k$ by $$Z_{\vec{e},k}(x)=({\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;e_1(t)dx(t),\;{\ldots},\;{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;ek(t)dx(t))$$ where ej ∈ L2[0, T] with ej ≠ 0 a.e., j = 1, …, k. In this paper we study the conditional Fourier-Feynman transform and a conditional convolution product for a cylinder type functionals defined on C0[0, T] with a general vector valued conditioning functions $Z_{\vec{e},k}$ above which need not depend upon the values of x at only finitely many points in (0, T] rather than a conditioning function X(x) = (x(t1), …, x(tn)) where 0 < t1 < … < tn = T. In particular we show that the conditional Fourier-Feynman transform of the conditional convolution product is the product of conditional Fourier-Feynman transforms.

Free and transient responses of linear complex stiffness system by Hilbert transform and convolution integral

  • Bae, S.H.;Cho, J.R.;Jeong, W.B.
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.753-771
    • /
    • 2016
  • This paper addresses the free and transient responses of a SDOF linear complex stiffness system by making use of the Hilbert transform and the convolution integral. Because the second-order differential equation of motion having the complex stiffness give rise to the conjugate complex eigen values, its time-domain analysis using the standard time integration scheme suffers from the numerical instability and divergence. In order to overcome this problem, the transient response of the linear complex stiffness system is obtained by the convolution integral of a green function which corresponds to the unit-impulse free vibration response of the complex system. The damped free vibration of the complex system is theoretically derived by making use of the state-space formulation and the Hilbert transform. The convolution integral is implemented by piecewise-linearly interpolating the external force and by superimposing the transient responses of discretized piecewise impulse forces. The numerical experiments are carried out to verify the proposed time-domain analysis method, and the correlation between the real and imaginary parts in the free and transient responses is also investigated.

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH INFINITE DIMENSIONAL CONDITIONING FUNCTION

  • Jae Gil Choi;Sang Kil Shim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1221-1235
    • /
    • 2023
  • In this paper, we use an infinite dimensional conditioning function to define a conditional Fourier-Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functions which form a Banach algebra. We then provide fundamental relationships between the CFFTs and the CCPs.

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH VECTOR-VALUED CONDITIONING FUNCTION

  • Ae Young Ko;Jae Gil Choi
    • The Pure and Applied Mathematics
    • /
    • v.30 no.2
    • /
    • pp.155-167
    • /
    • 2023
  • In this paper, we use a vector-valued conditioning function to define a conditional Fourier-Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functionals which form a Banach algebra. We then provide fundamental relationships between the CFFTs and the CCPs.