• Title/Summary/Keyword: Function space integral

Search Result 177, Processing Time 0.028 seconds

BOUNDEDNESS OF 𝓒b,c OPERATORS ON BLOCH SPACES

  • Nath, Pankaj Kumar;Naik, Sunanda
    • Korean Journal of Mathematics
    • /
    • v.30 no.3
    • /
    • pp.467-474
    • /
    • 2022
  • In this article, we consider the integral operator 𝓒b,c, which is defined as follows: $${\mathcal{C}}^{b,c}(f)(z)={\displaystyle\smashmargin{2}{\int\nolimits_{0}}^z}{\frac{f(w)*F(1,1;c;w)}{w(1-w)^{b+1-c}}}dw,$$ where * denotes the Hadamard/ convolution product of power series, F(a, b; c; z) is the classical hypergeometric function with b, c > 0, b + 1 > c and f(0) = 0. We investigate the boundedness of the 𝓒b,c operators on Bloch spaces.

Internal Aerodynamic Noise from Quick Opening Throttle Valve (쓰로틀 밸브의 빠른 열림 동작에 의한 내부공력소음)

  • 정철웅;김성태;김재헌;이수갑
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.310-318
    • /
    • 2004
  • For many industrial problems originating from aerodynamic noise, noise prediction techniques, reliable and easy to apply, would be of great value to engineers and manufacturers. General algorithm is presented for the prediction of internal flow-induced noise from quick opening throttle valve in an automotive engine. This algorithm is based on the integral formula derived by using the General Green Function, Lighthill's acoustic analogy and Curle's extension of Lighthill's. Novel approach of this algorithm is that the integral formula is so arranged as to predict frequency-domain acoustic signal at any location in a duct by using unsteady flow data in space and time, which can be provided by the Computational Fluid Dynamics Techniques. This semi-analytic model is applied to the prediction of internal aerodynamic noise from a throttle valve in an automotive engine. The predicted noise levels from the throttle valve show good agreement with actual measurements. The results show that the dipole noise is dominant in this phenomena and the origin of noise sources is attributed to the anti-vortex lines formed in the down-stream from a throttle valve. This illustrative computation shows that the current method permits generalized predictions of flow noise generated by bluff bodies and turbulence in flow ducts.

A GENERIC RESEARCH ON NONLINEAR NON-CONVOLUTION TYPE SINGULAR INTEGRAL OPERATORS

  • Uysal, Gumrah;Mishra, Vishnu Narayan;Guller, Ozge Ozalp;Ibikli, Ertan
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.545-565
    • /
    • 2016
  • In this paper, we present some general results on the pointwise convergence of the non-convolution type nonlinear singular integral operators in the following form: $$T_{\lambda}(f;x)={\large\int_{\Omega}}K_{\lambda}(t,x,f(t))dt,\;x{\in}{\Psi},\;{\lambda}{\in}{\Lambda}$$, where ${\Psi}$ = and ${\Omega}$ = stand for arbitrary closed, semi-closed or open bounded intervals in ${\mathbb{R}}$ or these set notations denote $\mathbb{R}$, and ${\Lambda}$ is a set of non-negative numbers, to the function $f{\in}L_{p,{\omega}}({\Omega})$, where $L_{p,{\omega}}({\Omega})$ denotes the space of all measurable functions f for which $\|{\frac{f}{\omega}}\|^p$ (1 ${\leq}$ p < ${\infty}$) is integrable on ${\Omega}$, and ${\omega}:{\mathbb{R}}{\rightarrow}\mathbb{R}^+$ is a weight function satisfying some conditions.

Fuzzy Measures Defined by the Semi-Normed Fuzzy Integrals (준 노름 퍼지 적분에 의해 정의된 퍼지 측도)

  • Kim, Mi-Hye;Lee, Soon-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.4
    • /
    • pp.99-103
    • /
    • 2002
  • In this paper, we investigate for how to define a fuzzy measure by using the semi-normed fuzzy integral of a given measurable function with respect to another given fuzzy measure when t-seminorm is continuous. Let (X, F, g) be a fuzzy measure space, h$\in$L$^\circ$(X), and $\top$ be a continuous t-seminorm.. Then the set function $\nu$ defined by $\nu$(A)=$\int _A$h$\top$g for any $A\in$F is a fuzzy measure on (X, F).

  • PDF

Development of Hybrid Method for the Prediction of Internal Flow-induced Noise and Its Application to Throttle Valve Noise in an Automotive Engine

  • Cheong, Cheol-Ung;Kim, Sung-Tae;Kim, Jae-Heon;Lee, Soo-Gab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4E
    • /
    • pp.183-196
    • /
    • 2003
  • General algorithm is developed for the prediction of internal flow-induced noise. This algorithm is based on the integral formula derived by using the General Green Function, Lighthill's acoustic analogy and Curl's extension of Lighthill's. Novel approach of this algorithm is that the integral formula is so arranged as to predict frequency-domain acoustic signal at any location in a duct by using unsteady flow data in space and time, which can be provided by the Computational Fluid Dynamics Techniques. This semi-analytic model is applied to the prediction of internal aerodynamic noise from a throttle valve in an automotive engine. The predicted noise levels from the throttle valve are compared with actual measurements. This illustrative computation shows that the current method penn its generalized predictions of flow noise generated by bluff bodies and turbulence in flow ducts.

An IE-FFT Algorithm to Analyze PEC Objects for MFIE Formulation

  • Seo, Seung Mo
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.6-12
    • /
    • 2019
  • An IE-FFT algorithm is implemented and applied to the electromagnetic (EM) solution of perfect electric conducting (PEC) scattering problems. The solution of the method of moments (MoM), based on the magnetic field integral equation (MFIE), is obtained for PEC objects with closed surfaces. The IE-FFT algorithm uses a uniform Cartesian grid to apply a global fast Fourier transform (FFT), which leads to significantly reduce memory requirement and speed up CPU with an iterative solver. The IE-FFT algorithm utilizes two discretizations, one for the unknown induced surface current on the planar triangular patches of 3D arbitrary geometries and the other on a uniform Cartesian grid for interpolating the free-space Green's function. The uniform interpolation of the Green's functions allows for a global FFT for far-field interaction terms, and the near-field interaction terms should be adequately corrected. A 3D block-Toeplitz structure for the Lagrangian interpolation of the Green's function is proposed. The MFIE formulation with the IE-FFT algorithm, without the help of a preconditioner, is converged in certain iterations with a generalized minimal residual (GMRES) method. The complexity of the IE-FFT is found to be approximately $O(N^{1.5})$and $O(N^{1.5}logN)$ for memory requirements and CPU time, respectively.

CHEYSHEFF-HALLEY-LIKE METHODS IN BANACH SPACES

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.83-108
    • /
    • 1997
  • Chebysheff-Halley methods are probably the best known cubically convergent iterative procedures for solving nonlinear equa-tions. These methods however require an evaluation of the second Frechet-derivative at each step which means a number of function eval-uations proportional to the cube of the dimension of the space. To re-duce the computational cost we replace the second Frechet derivative with a fixed bounded bilinear operator. Using the majorant method and Newton-Kantorovich type hypotheses we provide sufficient condi-tions for the convergence of our method to a locally unique solution of a nonlinear equation in Banach space. Our method is shown to be faster than Newton's method under the same computational cost. Finally we apply our results to solve nonlinear integral equations appearing in radiative transfer in connection with the problem of determination of the angular distribution of the radiant-flux emerging from a plane radiation field.

[Lp] ESTIMATES FOR A ROUGH MAXIMAL OPERATOR ON PRODUCT SPACES

  • AL-QASSEM HUSSAIN MOHAMMED
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.405-434
    • /
    • 2005
  • We establish appropriate $L^p$ estimates for a class of maximal operators $S_{\Omega}^{(\gamma)}$ on the product space $R^n\;\times\;R^m\;when\;\Omega$ lacks regularity and $1\;\le\;\gamma\;\le\;2.\;Also,\;when\;\gamma\;=\;2$, we prove the $L^p\;(2\;{\le}\;P\;<\;\infty)\;boundedness\;of\;S_{\Omega}^{(\gamma)}\;whenever\;\Omega$ is a function in a certain block space $B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ (for some q > 1). Moreover, we show that the condition $\Omega\;{\in}\;B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ is nearly optimal in the sense that the operator $S_{\Omega}^{(2)}$ may fail to be bounded on $L^2$ if the condition $\Omega\;{\in}\;B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ is replaced by the weaker conditions $\Omega\;{\in}\;B_q^{(0,\varepsilon)}(S^{n-1}\;\times\;S^{m-1})\;for\;any\;-1\;<\;\varepsilon\;<\;0.$

TD-CFIE Formulation for Transient Electromagnetic Scattering from 3-D Dielectric Objects

  • Lee, Young-Hwan;Jung, Baek-Ho;Sarkar, Tapan K.;Yuan, Mengtao;Ji, Zhong;Park, Seong-Ook
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.8-17
    • /
    • 2007
  • In this paper, we present a time domain combined field integral equation formulation (TD-CFIE) to analyze the transient electromagnetic response from dielectric objects. The solution method is based on the method of moments which involves separate spatial and temporal testing procedures. A set of the RWG functions is used for spatial expansion of the equivalent electric and magnetic current densities, and a combination of RWG and its orthogonal component is used for spatial testing. The time domain unknowns are approximated by a set of orthonormal basis functions derived from the Laguerre polynomials. These basis functions are also used for temporal testing. Use of this temporal expansion function characterizing the time variable makes it possible to handle the time derivative terms in the integral equation and decouples the space-time continuum in an analytic fashion. Numerical results computed by the proposed formulation are compared with the solutions of the frequency domain combined field integral equation.

  • PDF

EVALUATION OF SOME CONDITIONAL WIENER INTEGRALS

  • Chang, Kun-Soo;Chang, Joo-Sup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.99-106
    • /
    • 1984
  • J. Yeh has recently introduced the concept of conditional Wiener integrals which are meant specifically the conditional expectation E$^{w}$ (Z vertical bar X) of a real or complex valued Wiener integrable functional Z conditioned by the Wiener measurable functional X on the Wiener measure space (A precise definition of the conditional Wiener integral and a brief discussion of the Wiener measure space are given in Section 2). In [3] and [4] he derived some inversion formulae for conditional Wiener integrals and evaluated some conditional Wiener integrals E$^{w}$ (Z vertical bar X) conditioned by X(x)=x(t) for a fixed t>0 and x in Wiener space. Thus E$^{w}$ (Z vertical bar X) is a real or complex valued function on R$^{1}$. In this paper we shall be concerned with the random vector X given by X(x) = (x(s$_{1}$),..,x(s$_{n}$ )) for every x in Wiener space where 0=s$_{0}$ $_{1}$<..$_{n}$ =t. In Section 3 we will evaluate some conditional Wiener integrals E$^{w}$ (Z vertical bar X) which are real or complex valued functions on the n-dimensional Euclidean space R$^{n}$ . Thus we extend Yeh's results [4] for the random variable X given by X(x)=x(t) to the random vector X given by X(x)=(x(s$_{1}$).., x(s$_{n}$ )).

  • PDF