• Title/Summary/Keyword: Function Integration FAST

Search Result 29, Processing Time 0.029 seconds

A Study on the Collaboration of the Function Analysis and Idea Creation Phase with Function Integration FAST(FI FAST) and Hierarchical Value Engineering Concept Modules(HVECM) (통합 기능계통도와 계층적 컨셉모듈을 활용한 기능분석단계와 창조단계의 연계성에 관한 고찰)

  • In, Chi-Sung;NamKung, In-Il;Hyun, Chang-Taek;Koo, Kyo-Jin
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.355-360
    • /
    • 2006
  • Function analysis and idea creation phase in Value Engineering(VE) Process is applied to manufacturing Industry for developing functions for elements of products, and in construction come to use various components like process, size of project, spaces as well as function itself due to multi-functional aspect. For this reason, VE applications to the construction industry are considered to be less frequent and efficient than to the manufacturing. To resolve this problem, a new technique of Function Integration Fast(HI FAST) and Hierarchical Value Engineering Concept Modules(HVECM) was made for practical integration and sequence of VE job Plan. Two types of function would be defined In this method, first and second function, during the job Plan process, and two function champions be selected for next creation phase process. For verification of consecutiveness of function analysis and idea creation phase for successful VE project implementation, this methodology was tested under design phase in office and IT Multi-functional building project. Make sure the successful application of this process with this method, need to develop the talent of VE experts and team members for process of function analysis and creation phase.

  • PDF

THE FIT BETWEEN NEW PRODUCT STRATEGY AND VALUE CHAIN STRATEGY : A SYSTEM DYNAMICS PERSPECTIVE

  • Heungshik Oh;Kim, Bowon
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.37-43
    • /
    • 2001
  • New product development has been a key element fur organizational evolution. The bulk of research about new product strategy has focused solely on new product development function itself. This paper investigates cross-functional elements in new product development. More specifically, we suggest that there must exist a fit between new product strategy and value chain strategy. It means that, in order to support new product development activity, there must exist a relevant value chain strategy. We consider three types of integration - internal integration, customer integration, and supplier integration - as strategic elements of value chain strategy. For the case of new product strategy, we consider market newness and product technology unfamiliarity as strategic elements. We also consider two types of learning characteristic, i.e., \\\"fast-adaptive learning\\\" and \\\"slow-adaptive leaning\\\" as control factor. Learning characteristic represents firms organizational capability related with organizational learning. For example, fur fast-adaptive learning case, the effect of integration appears early in time. System dynamics simulation is employed to verify our research framework. The results exhibit that there must exist cross-functional relationships between value chain strategy and new product strategy in order to shorten total development time.al development time.

  • PDF

Scattering of arbitrarily large targets above a ground using steepest descent path integration (최대경사 적분법을 이용한 지면위 큰 대형 표적의 산란 특성)

  • Lee, Seung-Hak;Kim, Che-Young;Lee, Chang-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.7
    • /
    • pp.38-45
    • /
    • 2002
  • This paper derives the electric field integral equation to calculate scattering from arbitrary large target above and radiating of an electric line source within a lossy ground. Sommerfeld’s type integral requires a lot of time to calculate and has some difficulties and limitations for an analysis region. But SDP (steepest descent path) integration gives fast calculation of the integral, and the result shows that SDP integration has the validity for all over the analysis region with fast evaluation. Moment method with SDP integration is used to calculate the scattering of an arbitrary large conducting target and the results are compared with that of the numerical integration with Gaussian quadrature rule and GPOF (generalized pencil of function) method.

Stress Analysis of Linear Elastic Solid Problems by using Enhanced Meshfree Method based on Fast Derivatives Approximation (고속 도함수 근사화에 의해 개선된 무요소법을 이용한 선형탄성 고체문제의 응력해석)

  • 이상호;김효진;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.583-590
    • /
    • 2002
  • Point collocation method based on the fast derivatives approximation of meshfree shape function is applied to solid mechanics in this study. Enhanced meshfree approximation with approximated derivative of shape function is reviewed, and formulation of linear elastic solid mechanics by point collocation method is presented. It implies that governing equation of solid mechanics with strong form is directly formulated without no numerical integration cells or grid. The regularity of weight function is not required due to a use of approximated derivative, so we propose the exponential type weight function that is discontinuous in first derivative. The convergence and stability of the proposed method is verified by passing the generalized patch test. Also, the efficiency and applicability of the proposed method in solid mechanics is verified by solving types of solid problems. Numerical results show that not only a use of proposed weight function leads lower error and higher convergence rate than that of the conventional weight functions, but also the improved collocation method with derivative approximation enables to compute the derivatives of shape function very fast and accurately enough to replace the classical direct derivative calculation.

  • PDF

An Analog Content Addressable Memory implemented with a Winner-Take-All Strategy (승자전취 메커니즘 방식의 아날로그 연상메모리)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.105-111
    • /
    • 2013
  • We have developed an analog associative memory implemented with an analog array which has linear writing and erasing characteristics. The associative memory adopts a winner-take-all strategy. The operation for reading in the memory is executed with an absolute differencing circuit and a winner-take-all (WTA) circuit suitable for a nearest-match function of a content-addressable memory. We also present a system architecture that enables highly-paralleled fast writing and quick readout as well as high integration density. A multiple memory cell configuration is also presented for achieving higher integration density, quick readout, and fast writing. The system technology presented here is ideal for a real time recognition system. We simulate the function of the mechanism by menas of Hspice with $1.2{\mu}$ double poly CMOS parameters of MOSIS fabrication process.

Fast Analysis of Fractal Antenna by Using FMM (FMM에 의한 프랙탈 안테나 고속 해석)

  • Kim, Yo-Sik;Lee, Kwang-Jae;Kim, Kun-Woo;Oh, Kyung-Hyun;Lee, Taek-Kyung;Lee, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.121-129
    • /
    • 2008
  • In this paper, we present a fast analysis of multilayer microstrip fractal structure by using the fast multipole method (FMM). In the analysis, accurate spatial green's functions from the real-axis integration method(RAIM) are employed to solve the mixed potential integral equation(MPIE) with FMM algorithm. MoM's iteration and memory requirement is $O(N^2)$ in case of calculation using the green function. the problem is the unknown number N can be extremely large for calculation of large scale objects and high accuracy. To improve these problem is fast algorithm FMM. FMM use the addition theorem of green function. So, it reduce the complexity of a matrix-vector multiplication and reduce the cost of calculation to the order of $O(N^{1.5})$, The efficiency is proved from comparing calculation results of the moment method and Fast algorithm.

TIME STEPWISE LOCAL VOLATILITY

  • Bae, Hyeong-Ohk;Lim, Hyuncheul
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.507-528
    • /
    • 2022
  • We propose a path integral method to construct a time stepwise local volatility for the stock index market under Dupire's model. Our method is focused on the pricing with the Monte Carlo Method (MCM). We solve the problem of randomness of MCM by applying numerical integration. We reconstruct this task as a matrix equation. Our method provides the analytic Jacobian and Hessian required by the nonlinear optimization solver, resulting in stable and fast calculations.

3-D Hetero-Integration Technologies for Multifunctional Convergence Systems

  • Lee, Kang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.11-19
    • /
    • 2015
  • Since CMOS device scaling has stalled, three-dimensional (3-D) integration allows extending Moore's law to ever high density, higher functionality, higher performance, and more diversed materials and devices to be integrated with lower cost. 3-D integration has many benefits such as increased multi-functionality, increased performance, increased data bandwidth, reduced power, small form factor, reduced packaging volume, because it vertically stacks multiple materials, technologies, and functional components such as processor, memory, sensors, logic, analog, and power ICs into one stacked chip. Anticipated applications start with memory, handheld devices, and high-performance computers and especially extend to multifunctional convengence systems such as cloud networking for internet of things, exascale computing for big data server, electrical vehicle system for future automotive, radioactivity safety system, energy harvesting system and, wireless implantable medical system by flexible heterogeneous integrations involving CMOS, MEMS, sensors and photonic circuits. However, heterogeneous integration of different functional devices has many technical challenges owing to various types of size, thickness, and substrate of different functional devices, because they were fabricated by different technologies. This paper describes new 3-D heterogeneous integration technologies of chip self-assembling stacking and 3-D heterogeneous opto-electronics integration, backside TSV fabrication developed by Tohoku University for multifunctional convergence systems. The paper introduce a high speed sensing, highly parallel processing image sensor system comprising a 3-D stacked image sensor with extremely fast signal sensing and processing speed and a 3-D stacked microprocessor with a self-test and self-repair function for autonomous driving assist fabricated by 3-D heterogeneous integration technologies.

Performance Evaluation of Access Channel Slot Acquisition in Cellular DS/CDMA Reverse Link

  • Kang, Bub-Joo;Han, Young-Nam
    • ETRI Journal
    • /
    • v.20 no.1
    • /
    • pp.16-27
    • /
    • 1998
  • In this paper, we consider the acquisition performance of an IS-95 reverse link access channel slot as a function of system design parameters such as postdetection integration length and the number of access channel message block repetitons. The uncertainty region of the reverse link spreading codes compared to that of forward link is very small, since the uncertainty region of the reverse link is determined by a cell radius. Thus, the parallel acquisiton technique in the reverse link is more efficient than a serial acquisition technique in terms of implementation and of acquisition time. The parallel acquisition is achieved by a bank of N parallel I/Q noncoherent correlator are analyzed for band-limited noise and the Rayleigh fast fading channel. The detection probability is derived for multiple correct code-phase offsets and multipath fading. The probability of no message error is derived when rake combining, access channel message block combining, and Viterbi decoding are applied. Numerical results provide the acquisition performance for system design parameters such as postdetection integration length and number of access channel message block repetitions in case of a random access on a mobile station.

  • PDF

Double DOF control of an electromechanical integrated toroidal drive

  • Xu, Lizhong;Liu, Xin
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.115-131
    • /
    • 2007
  • The electromechanical integrated toroidal drive is a new drive system. For the control of the drive, the torque fluctuation and the steady-state errors should be removed and the fast response to the input change should be achieved. In this paper, the torque fluctuation of the drive system is analyzed and expressed as Fourier series forms. The transfer function of the torque control for the drive system is derived from its electromechanical coupled dynamic equations. A 2-DOF control method is used to control the drive system. Using definite parameter relationship of the 2-DOF control system, the steady errors of the torque control for the drive system is removed. Influences of the drive parameters on the control system are investigated. Using proper drive parameters, the response time of the control system is reduced and the quick torque response of the drive system is realized. Using a compensated input voltage, the torque fluctuation of the drive system is removed as well. The compensated input voltage can be obtained from the torque fluctuation equation and the transfer function. These research results are useful for designing control system of the new drive.